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1 Running Time

Tight bound ‚.g.n// For a given function g.n/, we denote by ‚.g.n// the set

‚.g.n// D ff .n/ W there exist positive constant c1; c2 and n0 such that

0 � c1g.n/ � f .n/ � c2g.n/ for all n � n0g;

and if f .n/ 2 ‚.g.n// we just write f .n/ D ‚.g.n//. We say g.n/ is an asymptotically tight bound for f .n/.

Upper bound O.g.n// We use O.g.n// to denote the set

O.g.n// D ff .n/ W there exist positive constant c and n0 such that

0 � f .n/ � cg.n/ for all n � n0g;

and we write f .n/ D O.g.n// if f .n/ 2 O.g.n//. We say g.n/ is an asymptotically upper bound for f .n/.

Lower bound �.g.n// We use �.g.n// to denote the set

�.g.n// D ff .n/ W there exist positive constant c and n0 such that

f .n/ � cg.n/ � 0 for all n � n0g;

and we write f .n/ D �.g.n// if f .n/ 2 �.g.n//. We say g.n/ is an asymptotically lower bound for f .n/.

1.1 The Substitution Method

In substitution method, we make a guess of the running time, and substitute the guess into the recursion formula, to
show that it works.

1.2 Recursion Trees

We illustrate the recursion tree method by examining the recursion

T .n/ D 3T .n=4/C cn2:

The running time when the input size is n is cn2 plus 3 times the running time of input size n=4. The recursion tree is

cn2

T .n=4/T .n=4/T .n=4/

We can expand T .n=4/ using the recursion formula, to obtain
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Since the size of the problem is reduced by a factor of 4 in each recursive call, the height of the tree is log4 n, and so
the number of leaves is 3log4 n. At the first level there is cn2 amount of work. At the second level there is 3 � c
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D O.n2/:

Since we have to do at least cn2 amount of work when the input size is n, we have T .n/ D ‚.n2/.
In summary, in recursion tree method we expand the recursion formula into a tree, then sum over times at each

level to obtain the total running time.

1.3 The Master Method

Theorem 1.1 (Master Theorem). Let a � 1 and b > 1 be constants, let f .n/ be a function, and let T .n/ be defined
by the recurrence

T .n/ D aT .n=b/C f .n/

where we interpret n=b to mean either bn=bc or dn=be. Then

(1) If f .n/ D O.n.logb a/��/ for some constant � > 0, then T .n/ D ‚.nlogb a/.

(2) If f .n/ D ‚.nlogb a/, then T .n/ D ‚.nlogb a lgn/.

(3) If the following two conditions hold:

(a) f .n/ D �.n.logb a/C�/ for some constant � > 0;
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(b) af .n=b/ � cf .n/ for some constant c < 1 and all sufficiently large n,

then T .n/ D ‚.f .n//.

Before going into the proof, let’s see some examples about how we can apply the master theorem.

T .n/ D 9T .n=3/C n We have a D 9; b D 3, and f .n/ D n, so nlogb a D nlog3 9 D ‚.n2/. Since f .n/ D O.n2�1/,
we can apply the first case of Theorem 1.1 to conclude that the solution is T .n/ D ‚.n2/. The a D 9 is so large that
the amount of work increases at each level (n;

�
9
3

�
n;
�
9
3

�2
n; : : :). If a were 3, so that T .n/ D 3T .n=3/C n, then the

second case applies: the amount of work at each level is n, and the height of the recursion tree is lgn, so the total
running time is ‚.n lgn/. If a were smaller than 3, for example a D 2, then log3 2 < 1 so the third case applies, and
we would have T .n/ D ‚.n/. When the number of repetitive works (a D 2) is smaller than the decrease in problem
size (b D 3), the amount of work at each level would decrease (n,

�
2
3

�
n;
�
2
3

�2
n; : : :) exponentially, so when we sum

them up we can use the familiar geometric series argument to bound the running time by ‚.n/.

T .n/ D T .2n=3/C 1 We have a D 1; b D 3=2; f .n/ D 1, and nlogb a D n0 D 1. The second case applies and we
conclude that the solution is T .n/ D ‚.lgn/.

T .n/ D 3T .n=4/ C n lgn This is an example where case 3 applies. We have a D 3; b D 4; f .n/ D n lgn, and
nlogb a D nlog4 3 D O.n0:793/. We know f .n/ is asymptotically lower bounded by n, so we can take � � 0:2.
The regularity condition af .n=b/ D 3.n=4/ lg.n=4/ � .3=4/n lgn also holds, so by the third case the solution is
T .n/ D ‚.n lgn/.

T .n/ D 2T .n=2/Cn lgn This is an example where the master method does not apply. nlogb a D n, but f .n/ D n lgn
is not polynomially larger than n� for any positive constant �. On the other hand, it is easy to guess that the running
time is ‚.n lg2 n/.

T .n/ D 2T .n=2/C‚.n/ Since nloga D n, case 2 applies and the running time is ‚.n lgn/.

T .n/ D 8T .n=2/C‚.n2/ and T .n/ D 7T .n=2/C‚.n2/ The first equation and the second equation have slightly
different a’s. For the first equation, nlogb a D 3 so the first term dominates and we have T .n/ D ‚.n3/ by case 1. For
the second equation, nlogb a D lg 7 � 2:8 > 2, so again the first term dominates and we have T .n/ D ‚.nlg7/. We
mention that this is the running time of the Strassen’s algorithm for matrix multiplication.

Proof of the Master Theorem. For simplicity we only prove for the case when T .n/ is an exact power of b. We use
the idea of recursion tree to solve for T .n/: at each level j , the problem size is reduced to n=bj , and the work is
f .n=bj /. Each node has a children, the number of nodes at each level is aj , so the total amount of work at level j is
ajf .n=bj /. The height of the tree is logb n, so the total work is

T .n/ D ‚.alogb n/C

logb n�1X
jD0

ajf .n=bj / D ‚.nlogb a/C

logb n�1X
jD0

ajf .n=bj /: (1)

Let g.n/ denote the second term in Eq. (1).

Case 1 When the condition f .n/ D O.n.logb a/��/ in (1) holds, we substitute n=bj for n to obtain f .n=bj / D
O..n=bj /.logb a/��/, so that

g.n/ D O

0@logb n�1X
jD0

aj
� n
bj

�.logb a/��

1A :
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The sum in the parenthesis is

logb n�1X
jD0

aj
� n
bj

�.logb a/��

D n.logb a/��

logb n�1X
jD0

�
ab�

blogb a

�j
D n.logb a/��

logb n�1X
jD0

.b�/
j

D n.logb a/��

�
b� logb n � 1

b� � 1

�
D n.logb a/��

�
n� � 1

b� � 1

�
D n.logb a/��O.n�/

D O.nlogb a/

so g.n/ D O.nlogb a/. We see from Eq. (1) that T .n/ D ‚.nlogb a/.

Case 2 When the condition f .n/ D ‚.nlogb a/ in (2) holds, we have f .n=bj / D ‚..n=bj /logb a/, so that

g.n/ D ‚

0@logb n�1X
jD0

aj
� n
bj

�logb a

1A :
The sum in the parenthesis is

logb n�1X
jD0

aj
� n
bj

�logb a

D nlogb a

logb n�1X
jD0

� a

blogb a

�j
D nlogb a

logb n�1X
jD0

1

D nlogb a logb n

D ‚.nlogb a lgn/

so g.n/ D ‚.nlogb a lgn/. From Eq. (1) we have T .n/ D ‚.nlogb a lgn/.

Case 3 From the conditions in (3),
af .n=b/ � cf .n/

+

f .n=b/ � .c=a/f .n/

+

f .n=bj / � .c=a/jf .n/

+

ajf .n=bj / � cjf .n/
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for n large enough. So

g.n/ D

logb n�1X
jD0

ajf .n=bj /

�

logb n�1X
jD0

cjf .n/CO.1/

� f .n/

1X
jD0

cj CO.1/

D f .n/

�
1
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�
CO.1/

D O.f .n//:

We can conclude from Eq. (1) that in this case T .n/ D ‚.f .n//.
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2 Data Structures

2.1 Elementary Data Structures

2.1.1 Stacks and Queues

Stacks We can implement a stack of at most n elements with an array SŒ1 : : n�. The array has attribute S: top that
indexes the most recently inserted element. The stack consists of elements SŒ1 : : S: top�, where SŒ1� is the element at
the bottom of the stack and SŒS: top� is the element at the top. When S: top D 0, the stack is empty. If we attempt to
pop an empty stack, we say the stack underflows, while if S: top exceeds n, the stack overflows. We can implement
the stack operations as in Algorithm 2.1.1.

Algorithm 2.1.1 Stacks

STACK-EMPTY(S )
if S: top = = 0 then

return TRUE

else
return FALSE

PUSH(S; x)
S: top D S: topC1
SŒS: top� D x

POP(S )
if STACK-EMPTY.S/ then

error “underflow”
elseS: top D S: top�1

return SŒS: topC1�

Queues We can implement a queue of at most n � 1 elements using an array QŒ1 : : n�. The queue has attribute
Q: head that points to the first element in the queue, and Q: tail that points to the last empty slot where a newly
arriving element will be inserted.

We can imagine that when we dequeue, we move Q: head to the right, and when we enqueue we move Q: tail to
the right. If any of them is already at the end of the array, then we move the pointer to the first slot of the array. See
Algorithm 2.1.2 for implementation.

2.1.2 Linked Lists

Linked list is a data structure where we can conveniently insert and delete elements. The list L has one attribute
L: head that points to the head of the list. If the list is empty then L: head D NIL. It has the following methods:
LIST-SEARCH; LIST-INSERT, and LIST-DELETE. Each element x 2 L is an object with three attributes:

x: key; x: prev and x: next :

If x: prev D NIL then x is the head, while if x: next D NIL it is the tail. See Algorithm 2.1.3 for implementation of
linked list. Here is the running time for linked list’s methods:

� The LIST-SEARCH procedure takes‚.n/ time. To search an element, we start from the head and go through the
chain of the links.
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Algorithm 2.1.2 Queue

ENQUEUE(Q;x) Q Add x to the end of the queue.

QŒQ: tail� D x
if Q: tail ¤ len.Q/ then

Q: tail D Q: tailC1
else

Q: tail D 1

DEQUEUE(Q) Q Remove the first element of the queue.

x D Q: head
if Q: head ¤ len.Q/ then

Q: head D Q: headC1
else

Q: head D 1

return x

� The LIST-INSERT procedure takes O.1/ time. To insert an element, we put it at the head.

� The LIST-DELETE procedure takes O.1/ time. If we want to delete a given key, then we have to first search
in the list and then do delete. This would take ‚.n/ time. To delete an element, we link x: prev and x: next
together.

Linked list can be very useful. We shall see in Section 2.4 that linked list can be used in hash tables to solve
collision. We can also use the idea of linked list to represent trees. For binary tree, we can implement a class T , with
attribute T: root that points to the root of the tree, similar to L: head, and with methods like SEARCH, INSERT and
DELETE (we discuss these methods in detail in the context of binary search trees). Each node x inserted in the tree is
an object with four attributes: x: key for storing data, x: p that points to the parent,x: left that points to its left child and
x: right that points to its right child. To implement a tree in which a node can have an arbitrary number of children,
we can substitute x: left and x: right with x: left-child and x: right-sibling. We mention that other implementations are
possible, for example heaps. Which scheme is the best depends on the application.

2.2 Binary Search Trees

Binary search tree is another data structure in which we can store data and perform search, insert and delete operations.
In order to achieve these operations in an effective way, we attempt to link the data in some way, specifically into binary
search trees. We put the data in nodes and we link the nodes so that they are organized into a binary tree T . Each node
x is an object that has four attributes, see Table 1. We require the binary-search-tree property

x: left : key � x: key � x: right : key

to hold for any x 2 T after any modification of the tree. This property is how we organize the data in the tree, and it
is this property that can let us perform efficient operations like search or insert.

We will see that the running time for the search, insert and delete operations are all proportional to the height of
the tree. If the binary tree is balanced, so that h D lgn, then those operations will be very efficient. However, if the
tree is very unbalanced so that h D ‚.n/, then those operations we wish to perform would take significantly longer
time. There is no guarantee that when we insert elements a binary search tree will remain balanced. In Section 2.3 we
will see how we can maintain the balance using red-black trees.
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Algorithm 2.1.3 Linked List

LIST-SEARCH(L; k)
x D L: head
while x ¤ NIL and x: key ¤ k do

x D x: next
return x

LIST-INSERT(L; x)
x: next D L: head
if L: head ¤ NIL then Q If L is not empty

L: head : prev D x

L: head D x
x: prev D NIL

LIST-DELETE(L; x)
if x: prev == NIL then Q If x is head

L: head D x: next
else Q If x is not head

x: prev : next D x: next

if x: next ¤ NIL then Q If x is not tail

x: next : prev D x: prev

x: key data
x: p parent of x
x: left left child of x
x: right right child of x

Table 1: Attributes of a node in binary search tree.
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(a) B < C < A. B is the minimum.

A

B

C

(b) B > C > A. B is the maximum.

Figure 1: Maximum and minimum points in branches in BST.

Note that in a binary search tree, for a “left triangle” pattern like Fig. 1a, the “peak” is the node with minimal key
among the three nodes, while for a “right triangle” like Fig. 1b, the “peak” is the maximum among the three nodes.
This observation will be helpful when we delete a node x and need to organize other nodes around x so as to maintain
the binary-search-tree property.

We can print out the data in order in a BST using INORDER-TREE-WALK that takes ‚.n/ time.

INORDER-TREE-WALK(x)
if x ¤ NIL then

INORDER-TREE-WALK.x: left/
print.x: key/
INORDER-TREE-WALK.x: right/

2.2.1 Queries

Search To search whether a key value k is in the tree T , we call TREE-SEARCH.T: root; k/. We start from the root
and compare k with T: root. If k is smaller we go left and compare it to the left subtree, because all elements in the
right subtree is larger than the root, so there is no chance that k will be in the right subtree. Similarly if T: root < k

then we go right and compare it to the right subtree.

TREE-SEARCH(x; k)
if x = = NIL or k == x: key then

return x
if k < x: key then

return TREE-SEARCH.x: left; k/
else

return TREE-SEARCH.x: right; k/

The nodes encountered during the recursion form a simple path downward from the root of the tree, thus the
running time of TREE-SEARCH is O.h/, where h is the height of the tree.

Maximum and Minimum To find the minimum element in T , we just need to keep going left. To find the maximum,
we keep going right. Both of these procedures take O.h/ time since again we trace a simple path downward from the
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root.

TREE-MINIMUM(x)
while x: left ¤ NIL do

x D x: left

return x

TREE-MAXIMUM(x)
while x: right ¤ NIL do

x D x: right

return x

Successor and predecessor The successor of a node x is the node whose key is the smallest among all nodes that
have keys larger than x:key. In other words,

succ.x/ D minfy j x: key < y: keyg:

Similarly, the predecessor is

pred.x/ D maxfy j y: key < x: keyg:

If the node x has right subtree, then the successor of x would be the minimum element in the right subtree. If,
however, x does not have a right subtree, then the successor is at the top of x and so we should walk along the up and
right direction of the tree. As long as x is the right child of its parent x:p, the parent is smaller than x. We continue
walking along the tree until the child is a left child of its parent (in other words we are able to turn right). By that time
the parent should be larger than all nodes in its left subtree, and in particular, x.

TREE-SUCCESSOR(x)
if x: right ¤ NIL then

return TREE-MINIMUM.x: right/

y D x: p

while y ¤ NIL and x == y: right do
x D y; y D y: p Q go upward

return y

The algorithm for finding predecessor is symmetric. If the left subtree of x is not empty, then we return the
maximum element of its subtree. If it does not have a left subtree, then we walk upward. As soon as we are able to
turn left, we find the element that is smaller than all elements in its right subtree, and in particular, x. This element
would then be the predecessor of x.

TREE-PREDECESSOR(x)
if x: left ¤ NIL then

return TREE-MAXIMUM.x: left/

y D x: p

while y ¤ NIL and x == y: left do
x D y; y D y: p Q go upward

return y

13



2.2.2 Insertion and Deletion

Insertion To insert an element z into T , we start from the root and walk down the tree to find the appropriate place,
so that the binary-search-tree property is maintained. If T D ¿, then we let z be the root. Otherwise, if T is not
empty, then we compare z: key with T: root : key:

1. If z: key < T: root : key, then we should insert z somewhere in the left subtree of T: root.

2. If z: key � T: root : key, then we should insert somewhere in the right subtree of T: root.

In the first case we continue to compare z with the root’s left child, and in the second case we compare z with the
root’s right child. We continue to do so, until we have no node to compare. In other words, we might arrive at a node
x where we want to compare z with x: left, but find x: left D NIL. In this case we can let z be the left child of x. Or
we might want to compare z with x: right but find x: right D NIL. In this case we let z be the right child of x.

TREE-INSERT(T; z)
x D T: root; y D NIL

while x ¤ NIL do
y D x Q After the iteration y is the parent of x

if z: key < x: key then
x D x: left Q Go down the tree

else
x D x: right Q Go down the tree

z: p D y Q x becomes NIL. We find the node to append z

if y == NIL then
T: root D z

else if z: key < y: key then
y: left D z Q Set z as the left child of y

else
y: right D z Q Set z as the right child of y

Notice that there is a small redundancy in the procedure TREE-INSERT, namely by the time x becomes NIL, we
should know whether it is the left child or right child (of y) that is empty, but since we do not keep track of this
information, after we find an empty spot we have to re-compare z with its to-be parent y.

Since we’re tracing down the tree, the algorithm runs in O.h/ time.

Deletion To delete the node z 2 T , we change the “connections” of its “surroundings”. We need to consider four
cases.

1. If z has no left child, then we just replace z with its right child (Fig. 2a).

2. Similarly, If z has no right child, then we just replace z with its left child (Fig. 2b).

3. If z has both left child and right child, then we replace z by its successor, y. Note that by its nature y should
have no left child.

(a) If its successor y 2 T is z’s right child, then we replace z by y and then give z’s left child to y (Fig. 2c).

(b) If its successor y 2 T is not z’s right child, but somewhere in the right subtree, we again replace z by y,
but we should not forget to also replace y by its right child (Fig. 3).

In Cormen et al. 2009, the authors used a routine called TRANSPLANT. This routine replaces a node u by v, but
notice that it does not handle u’s children.
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Figure 2: Deletion in binary search tree.
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Figure 3: Delete the node z 2 T when its successor y 2 T lies within the right sub-tree of z. In this case we replace z
by y and we replace y by its right child x (which may be NIL).
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TRANSPLANT(T; u; v)
if u: p = = NIL then Q if u is the root, then just set the root to v.

T: root D v
else if u == .u: p/: left then Q i.e. if u is the left child of its parent,

.u: p/: left D v Q then replace u by v.

else Q i.e. if u is the right child of its parent,

.u: p/: right D v Q then replace u by v.

if v ¤ NIL then
v: p D u: p Q set v’s parent as u’s parent.

In the delete procedure, if z’s successor y is not its right child, then we need to transfer z’s right subtree to y, while
if the successor y is the right child of z, then we do not need to do this, since the right subtree of z is already the tree
rooted at y. But in both cases we need to transfer z’s left subtree to y. Since we used TREE-MINIMUM in deletion,
the running time is again O.h/.

TREE-DELETE(T; z)
if z: left == NIL then Q (1) if z has no left child,

TRANSPLANT.T; z; z: right/ Q transplant z’s right subtree to its position.

else if z: right = = NIL then Q (2) if z has no right child,

TRANSPLANT.T; z; z: left/ Q transplant z’s left subtree to its position.

else
y D TREE-MINIMUM.z: right/ Q find the successor of z

if y: p ¤ z then Q (4) if y is not the right child of z,

TRANSPLANT.T; y; y: right/ Q replace y by its right child,

y: right D z: right Q handle the right subtree of z,

.y: right/: p D y Q handle the right subtree of z.

TRANSPLANT.T; z; y/ Q (3), (4) handle the parent of z

y: left D z: left Q (3), (4) handle the left subtree of z

y: left : p D y Q (3), (4) handle the left subtree of z

2.3 Red-Black Trees

From Section 2.2, we know that all operations in binary search tree, like searching, finding maximum or minimum
element, insertion and deletion, have running time O.h/ that is proportional to the height of the tree. If the tree is
balanced, then the height is O.lgn/ so we can do all the operations in logarithmic time. But in a plain BST there is no
guarantee that during insertions the tree will stay balanced. A red-black tree is a data structure that ensures the balance
of the tree, and at the same time achieves O.lgn/ time for all operations. The trade-off is that insertion and deletion
are far more complicated than vanilla binary search tree.

A red-black tree is a binary search tree with one extra bit of storage per node: its color, which can be either RED

or BLACK. It is required to maintain the following properties during the operations:

1. Every node is either red « or black «.

2. The root is black «. Every leaf (NIL) is black «.

3. If a node is red «, then both its children are black «.

4. For each node, all simple paths from the node to descendant leaves contain the same number of black « nodes.

17



Item 3 and Item 4 together constrain the tree to be balanced. If there is no Item 3 but only Item 4, then all nodes
could be red and the red-black tree would turn into a plain BST. On the other hand, all nodes could be black in a
red-black tree, but if we only insert black nodes, then Item 4 could be violated, so we may have to insert red nodes in
many circumstances.

We call the number of black nodes on any simple path from, but not including, a node x down to a leaf the black-
height of the node, denoted by bh.x/. We define the black height of a red-black tree to be the black height of its
root.

Theorem 2.1. A red-black tree with n internal nodes (namely, nodes that are not leaves) has height at most 2 lg.nC1/.

Proof. We first show that the subtree rooted at any node x contains at least 2bh.x/ � 1 internal nodes. We prove by
induction on the height of x. If the height of x is 0, x is a leaf (NIL), and indeed the subtree rooted at x contains at least
2bh.x/ � 1 D 20 � 1 D 0 internal nodes. Suppose x has positive height. Each child of x has a black height of either
bh.x/ or bh.x/ � 1, depending on whether x is red or black. By hypothesis each child of x has at least 2bh.x/�1 � 1
internal nodes. Thus the subtree rooted at x contains at least

.2bh.x/�1 � 1/C .2bh.x/�1 � 1/C 1 D 2bh.x/ � 1

internal nodes.
Let h be the height of the tree. From the properties of red-black tree (Item 3), at least half the nodes on any simple

path from the root to a leaf, not counting the root, must be black. Consequently the black-height of the root must be at
least h=2. Thus

n � 2h=2 � 1 ) h � 2 lg.nC 1/:

2.4 Hash Tables

Hash table is convenient when we want to store some keys of size K out of a big universe U of keys. Instead of
creating a huge space of size U , which is often impractical, we can use only ‚.K/ space to store keys that will arrive
in, while at the same time still maintain O.1/ time for the operations of search, delete and insert.

We maintain a hash table T Œ0 : :m�1� with sizem << jU j, and we use a hash function h W U ! f0; 1; : : : ; m�1g
to map the universe of keys to their slots in T Œ0 : :m � 1�. We assume the computation of h.k/ takes O.1/ time for
any k 2 U . We say k hashes to h.k/ and h.k/ is the hash value of k. To put an element x into the hash table, we first
compute the hash value of its key, h D h.x: key/, and then we put x to T Œh�. Of course, withmmuch smaller than jU j,
we have the possibility of collision. A first way to solve collision is chaining. We let each slot in T Œ0 : :m � 1� to be
a linked list, and we put all elements that hash to the same slot into the same linked list, so as to distinguish between
them. With chaining, search, insertion and deletion operations are easy to implement.

CHAINED-HASH-SEARCH(T; k)
LIST-SEARCH .T Œh.k/�; k/

CHAINED-HASH-INSERT(T; x)
h D h.x: key/
LIST-INSERT .T Œh�; x/

CHAINED-HASH-DELETE(T; x)
h D h.x: key/
LIST-DELETE .T Œh�; x/
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Let’s analyze the running time of the operations. Insertion and deletion takeO.1/ time, since inserting and deleting
an element in a (doubly) linked list take O.1/ time (see Section 2.1.2). Now what is the time for searching in a hash
table with chaining? It is obvious that the search time for k depends on the length of the list T Œk�. Assume there are n
elements and m slots. We define the load factor as ˛ D n=m. We assume simple uniform hashing, meaning that any
given element is equally likely to hash into any of the m slots, independently of where any other element has hashed
to. The expected number of elements for each linked list is then n=m D ˛. For an unsuccessful search, it is clear that
the average time is‚.1C˛/. (1 for computing the hash value). For an successful search, it can take slightly less time,
but the average time is also ‚.1C ˛/. Below is a precise analysis.

Denote the n elements in the hash table by fx1; : : : ; xng, and denote the search time for xi by Si . We assume
each element is equally likely to be searched for, so we shall calculate the average of expected search time for each
element. What is Si? It is the number of iterations in search for ki , i.e. Si is the number of elements in the list
T Œh.ki /� that lie before xi , i.e. the elements that are later inserted into the hash table who all have the same hash
value as ki . Let Xij WD I fh.ki / D h.kj /g. We have P Œh.ki / D h.kj /� D 1=m so EŒXij � D 1=m. We then have
Si D Xi.iC1/ C � � � CXin. The average expected running time is then

1

n

nX
iD1

.1C EŒSi �/ D
1

n

nX
iD1

0@1C E

24 nX
jDiC1

Xij

351A D 1
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nX
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0@1C nX
jDiC1
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iD1
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iD1
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n �
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D 1C
˛

2
�
˛

2n
D ‚.1C ˛/:

If m is proportional to n, namely for larger n hash table with larger size m is used, we have n D O.m/ and so
˛ D n=m D O.m/=m D O.1/. To summarize, under the conditions

1. chaining is used to resolve collision;

2. each key is equally likely to hash into any slots, independently of other keys;

3. load factor is constant,

searching in the hash table takes constant time.

2.4.1 Hash functions

Here we discuss several basic hash functions.

Uniformly distributed keys If the keys are uniformly distributed in Œ0; 1�, then the hash function
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h.k/ D bkmc

satisfies the condition of simple uniform hashing.

Division method The division method takes an integer and return its reminder when divided by m:

h.k/ D k mod m:

For example, ifm D 73, then h.34/ D 34 and h.4211/ D 50. Note that if we represent the integer k in binary number
as

bq � � � b1 D bq � 2
q�1
C � � � C b1 � 2

0

where bj 2 f0; 1g; j D 1; : : : ; q, we see that dividing k by 2p for some p < q will leave with the remainder
bp�1 � � � b1 D bp�1 � 2

p�1 C � � � C b1 � 2
0, the lowest p bits of k. Thus we should avoid choosing m as a power of 2.

Multiplication method The multiplication method would first multiply k by some constant A 2 .0; 1/, then extract
the fractional part (.kA mod 1/ would extract the fractional part), which is again a number in .0; 1/, and then multiply
m and take the floor, so as to return a number in f0; : : : ; m � 1g. The formula is

h.k/ D bm.kA mod 1/c; 0 < A < 1:

Setting m D 2p for some integer p makes the computation faster. Suppose the word size of the machine is w bits
and k 2 .0; 2w/ is a w-bit integer. For example

� if w D 2 then 2w D 22 D 100 so 0 < k < 100 is a 2-bits integer;

� if w D 3 then 2w D 23 D 1000 so 0 < k < 1000 is a 3-bits integer;

� if w D 4 then 2w D 24 D 10000 so 0 < k < 10000 is a 4-bits integer.

Additionally assume A D s=2w , where s 2 .0; 2w/. Then ks 2 .0; 22w/ is a 2w-bits integer. Denote the left w digits
by r1 2 .0; 2w/ and the right w digits by r0 2 .0; 2w/, so that

ks D r1 � 2
w
C r0:

Then

kA D
ks

2w
D
r1 � 2

w C r0

2w
D r1 C

r0

2w

so the fractional part of kA is r0
2w . We then multiply m D 2p to get� r0

2w

�
� 2p:

What is this? Since r0 is w-bits, we imagine that dividing it by 2w D 1 00 � � � 0„ƒ‚…
w digits

moves the decimal point to the left,

all the way to the front of the number, and then multiplying by 2p moves the decimal points to the right by p digits.
Taking the floor, we discard what is at the right of the decimal point and only retain the left part, the first p digits of
r0.

So to summarize, when we use m D 2p , to compute h.k/ we just need to select a w-bits integer s, multiply k by s
and take the first p digits of the right w-bits of the product.
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2.4.2 Open Addressing

We saw that in chaining we can solve collision by putting a linked list container in each hash table slot. Open
addressing is a different strategy for solving collision. If a key is hashed to an occupied slot, then we try to find
another empty place in the hash table to place the key. This is called probing. The hash function now becomes
h W U � f0; 1; � � � ; m � 1g ! f0; 1; � � � ; m � 1g. Each time we insert or search for a key we produce a sequence

.h.k; 0/; h.k; 1/; : : : ; h.k;m � 1//;

which is required to be a permutation of .0; 1; : : : ; m � 1/, so that every hash-table position is eventually considered.
We introduce three methods for probing:

� Linear Probing:

h.k; i/ D .h0.k/C i/ mod m;

where h0 W U ! f0; 1; : : : ; m � 1g is an ordinary hash function. So we first probe T Œh0.k/�, then we probe
T Œh0.k/C 1�; T Œh0.k/C 2� and so on...and we wrap around to slots T Œ0�; T Œ1�::: until T Œh0.k/� 1�. This is just
the ordinary hash, plus the simple procedure that if a slot is occupied then check the next slot.

� Quadratic Probing:

h.k; i/ D .h0.k/C c1i C c2i
2/ mod m:

In quadratic probing, the interval between probes increases quadratically.

� Double Hashing:

h.k; i/ D .h1.k/C ih2.k// mod m:

The starting position and the step are both determined by hash functions, so it is more “random".

We have different methods for probing but the procedures for insert and search are the same. For insertion, we
examine elements j in the sequence .h.k; 0/; h.k; 1/; : : : ; h.k;m � 1// one by one until we find an empty slot T Œj �,
and then we insert the key there.

HASH-INSERT(T; k)
i D 0

while i � m � 1 do
j D h.k; i/

if T Œj � == NIL then
T Œj � D k

return j
else

i D i C 1

error “hash table overflow”

For searching, we again examine elements j in the sequence .h.k; 0/; h.k; 1/; : : : ; h.k;m � 1// one by one. We
can stop our search if we find that T Œj � is empty, because k would have been inserted there.

HASH-SEARCH(T; k)
i D 0
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while i � m � 1 do
j D h.k; i/

if T Œj � == k then
return j

else if T Œj � == NIL then
return NIL

i D i C 1

return NIL

It should be clear that probing makes deletion difficult. Suppose our hash table slots consist of 0; 1; 2; 3 and 4, and
we inserted k to slot 4 using the sequence .0; 1; 2; 3; 4/. So 0; 1; 2; 3 are all occupied at the time. Then if we delete
the key in, say, 2, then when we search for k in the hash table using .0; 1; 2; 3; 4/, we would find T Œ2� == NIL and the
above function would return NIL.

The solution would be to mark the deleted slot as DELETED instead of None. We insert k to places that are empty
or are marked as DELETED. The search function does not need to be modified. However, search times no longer
depend on the load factor ˛, and indeed we suspect that it may be linear. For this reason chaining is more commonly
used as a collision resolution technique when keys must be deleted.

Analysis of Open Addressing Looking at the two programs for insert and search, it seems at first that the running
times are both linear in m, i.e. O.m/. However, it may take less than m iterations for searching or insertions, and that
is the point of our analysis. We highlight two important assumptions that we are using in the following analysis:

˘ ˛ is constant;

˘ we assume uniform hashing.

So for example if there are n elements in a hash table of size m, then when we search for a key k, with probability
approximately ˛ D n=m our first probe is unsuccessful; with probability approximately ˛2 our second probe is
unsuccessful.....if k is not in the table then the search time is bounded by 1C ˛C ˛2C � � � D 1=.1� ˛/. If k is in the
table then the search time depends on when k was inserted. We worked out below that the average time is bounded by
.1=˛/ ln.1=.1 � ˛//.

The assumption of uniform hashing is that the probe sequence .h.k; 0/; h.k; 1/; : : : ; h.k;m� 1// is equally likely
to be any permutation of .0; 1; : : : ; m � 1/. None of the above three probing methods is uniform. Linear probing and
quadratic probing are only able to produce ‚.m/ sequences, and for double hashing it is ‚.m2/, since each possible
pair .h1.k/; h2.k// yields a distinct probe sequence.

Theorem 2.2. Given an open-address hash table with load factor ˛ D n=m < 1, the expected number of probes in
an unsuccessful search is at most 1=.1 � ˛/, assuming uniform hashing.

Proof. In an unsuccessful search, we probe X occupied slots before finding an empty slot, from which we conclude
that the key we are searching for is not in the table. We’d like to calculate EŒX�. There is a formula for this:

EŒX� D
1X
iD0

i � PfX D ig

D

1X
iD0

�
PfX � ig � PfX � i C 1g

�
D

1X
iD1

PfX � ig:
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So we need to calculate PfX � ig. Let Ai be the event that the i th probe finds an occupied slot. Then fX � ig D
A1 \ A2 \ � � � \ Ai . The probability is

PfA1g � PfA2jA1g � PfA3jA1 \ A2g � � �PfAi jA1 \ � � � \ Ai�1g:

There are n elements and m slots so PfA1g D n=m. For j > 1, the probability is .n� j C 1/=.m� j C 1/, since we
are finding (assume uniform hashing) among the remaining .n � .j � 1// elements in one of the .m � .j � 1// slots,
given that the first j � 1 slots are found to be occupied. So we have

PfX � ig D
n

m
�
n � 1

m � 1
� � �

n � i C 1

m � i C 1

�

� n
m

�i
D ˛i :

Consequently

EŒX� D
1X
iD1

PfX � ig

�

1X
iD1

˛i

D
˛

1 � ˛
:

The number of probes in an unsuccessful search is X C 1, so the expectation is bounded by 1 C ˛=.1 � ˛/ D

1=.1 � ˛/.

If the hash table is half full, the average number of probes in an unsuccessful search is at most 1=.1 � 0:5/ D 2.
If it is 90 percent full, the average number of probes is at most 1.1 � 0:9/ D 10. If ˛ is constant, then 1=.1 � ˛/ is
constant, so an unsuccessful search runs in O.1/ time.

We can see from the above HASH-INSERT function that inserting an element into an open-address hash table is
basically the same as an unsuccessful search. So if ˛ is constant, then insertion also takes O.1/ time.

Theorem 2.3. The expected number of probes in a successful search is at most

1

˛
ln

1

1 � ˛
:

(assuming uniform hashing and assuming that each key in the table is equally likely to be searched for)

Proof. Denote S to be the number of probes in a successful search. The sequence of probes for k is the same as when
k is inserted, i.e. .h.k; i//iD0;1;:::;m�1. What is the upper bound for expected search time Sk for a particular key k?
This depends on the load factor ˛ when k was inserted. If k is the .i C 1/st key inserted into the hash table, so that the
load factor was i=m, then an upper bound for EŒSk � is 1=.1 � i=m/ D m=.m � i/. By law of iterated expectation,

EŒS� D EŒEŒSk �� �
1

n

n�1X
iD1

m

m � i
D
m

n

n�1X
iD1

1

m � i

D
1

˛

mX
kDm�nC1

1

k
�
1

˛

Z m

m�n

1

x
dx

D
1

˛
ln

m

m � n

D
1

˛
ln

1

1 � ˛
:
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Figure 4: Illustration of insertion sort.

3 Sorting

3.1 InsertionSort

Insertion sort is a relatively straightforward sorting algorithm. Given an array A, it maintains a sorted subarray on the
left part of A, expands it by comparing and swapping the next element with each element inside the sorted subarray.
See Fig. 4.

INSERTION-SORT(A)
for j D 2 to A: length do

key D AŒj �

i D j � 1

while i > 0 and key < AŒi� do Q Insert AŒj � into the sorted sequence AŒ1 : : j � 1�

AŒi C 1� D AŒi�

i D i � 1

AŒi C 1� D key

It is clear from Fig. 4 that the running time of insertion sort is‚.n2/. Even if we use binary search when we insert
the key, we still have to do the swaps, so in terms of swaps the complexity would still be ‚.n2/.

3.2 MergeSort

Merge sort is a divide and conquer algorithm. To sort an array of length n, the algorithm divides the array into two
subarrays of length n=2, and recursively sort the two subarrays. It then combines the two sorted subarrays using a
merge operation. This merge operation is the key. It is like a “finger-pointing” operation, illustrated in Fig. 5. To
merge two subarrays, we imagine aligning them vertically and using two fingers to point at the two heads. For the one
that is smaller, that element comes down and we move that finger upward. Continue to compare the elements at our
two fingers this way until all elements come down. It is clear from this scheme that the running time of merge isO.n/.

Let T .n/ be the running time of merge sort for an array of size n. We have the relationship

T .n/ D T .n=2/C T .n=2/C cn;

namely the time to sort A is the sum of the time spent on sorting left and right parts of A plus the time for merging the
two parts, which takes ‚.n/ times. We can use a recursion tree to get a picture of this equation:
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Figure 5: Illustration of merge sort. Image from MIT6.006 Introduction to Algorithms course slides.

cn

T .n=2/T .n=2/

The picture means that T .n/ is cn plus T .n=2/ and T .n=2/. We can then further decompose each T .n=2/ in a similar
fashion

cn

cn=2

T .n=4/T .n=4/

cn=2

T .n=4/T .n=4/

until we get to the bottom:

cn

cn=2

cn=4cn=4

cn=2

cn=4cn=4

� � �� � �

‚.1/

It is easy to see that the depth is 1C lgn, and the total number of leaves is n. Each level takes a total of cn amounts
of work, so the overall complexity of the merge sort algorithm is ‚.n lgn/.
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i
j
�!

Figure 6: Illustration of QUICKSORT. i is the frontier of the smaller part, and j is the frontier of the larger part.

Our merge sort algorithm is not in place, and it takes ‚.n/ auxiliary space. In-place implementation of merge sort
does exist, but it is very complicated and not necessary performs well compared to the non in-place implementation,
so it is not used much.

3.3 Quicksort

In quicksort, we select a pivot element, usually the first or the last element of the array, then put all elements that
are less than the pivot to the left, and all elements that are greater than the pivot to the right. When then recursively
sort the left part and the right part using the same method. When we finished the final array should become sorted. A
somewhat nasty detail is how should we do this in-place, instead of creating new arrays each time. The implementation
in Cormen et al. 2009 is Algorithm 3.3.1. The PARTITION procedure is meant to put elements of the array to the left

Algorithm 3.3.1 Quicksort Algorithm

QUICKSORT(A, p, r)
if q < r then

q D PARTITION.A; p; r/

QUICKSORT.A; p; q � 1/

QUICKSORT.A; q C 1; r/

PARTITION(A, p, r)
x D AŒr�

i D p � 1

for j D p to r � 1 do
if AŒj � � x then

i D i C 1

exchange AŒi� and AŒj �

exchange AŒi C 1� and AŒr�
return i C 1

and right of the pivot element in an in-place fashion. We imagine that we maintain smaller elements in the left part of
the array and larger elements on the right part. i is the frontier of the smaller part while j is the frontier of the larger
part. As j explores the whole array, if it discovers that AŒj � is smaller than the pivot, then we put it at the end of the
larger part (in other words let it be the frontier of the smaller part). See Fig. 6 for an illustration.

Regarding the running time of quicksort, we have to make ‚.n/ comparisons each time, and in the balanced case
each time we reduce the array to two subarrays, so T .n/ D ‚.n/ C 2T .n=2/. Thus the average running time is
‚.n lgn/. It is easy to see from the algorithm that if the array A is already sorted, then each time we would do n � 1
comparisons to make the problem reduce size by only 1 element, thus the worst case running time is ‚.n2/.
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1T D Œ 2; 3 4; 5; 6; 7 8; 9; 10; 11; 12; 13; 14; 15 16; 17; : : : �

Figure 7: Heap T as an array. The numbers are indices. Elements that are on the same level are shown in the same
color block.

3.4 Heapsort

(Binary) heaps are nearly complete binary trees with the additional max-heap or min-heap property. A complete binary
tree of height h, denoted by Th, is the binary tree such that all nodes except the leaves have two children. The zero
level has one node, namely the root; the first level has 2 nodes, the second level has 2 � 2 D 4 nodes, the third level has
2 � 4 D 8 nodes...and the h level has 2h nodes (all of them are leaves). The total number of nodes of such a complete
binary tree is thus

1C 2C � � � C 2h D 2hC1 � 1:

A heap T � Th of height h is Th with 0 or more leaves removed. Thus, the number of nodes n.T / for a heap T with
height h is bounded by

.2h � 1/C 1 � n.T / < .2hC1 � 1/C 1:

So we can derive
2h � n.T / < 2hC1

+

h � lgn.T / < hC 1

+

blgn.T /c D h:

There are two types of heaps:

� A max-heap is a heap where each node is always larger or equal to its children;

� A min-heap is a heap where each node is always smaller or equal to its children.

We shall concentrate our analysis on max-heaps. The situation for min-heaps are completely similar. As noted in
Cormen et al. 2009, we can implement heaps using arrays. Instead of viewing heaps as trees, we can also imagine
heaps as in Fig. 7. From top to down, left to right, we index each element in the tree T as 1; 2; 3; : : :. Then we can see
that for a node i , its left child is in position 2i and its right child is in 2i C 1. Thus the parent of a node i is bi=2c.

Given a node i , the MAX-HEAPIFY procedure looks at the “triangle4” hi; i: left; i: righti and see whether i is the
largest. If it is small, then exchange it wit one of its children. Then after we put it down, we continue to look at
the “triangle4” and do the same, until we have put the node i down to a suitable position. It is easy to see that the
MAX-HEAPIFY procedure has running time O.h/ D O.lgn/. In Cormen et al. 2009, a variable size is maintained so
as to delimit elements from the heaps from elements that are removed and put at the end of the array.

MAX-HEAPIFY(T , i )
l D LEFT.i/; r D RIGHT.i/

if l � T: size and T Œl� > T Œi � then
largest D l

else
largest D i

if r � T: size and T Œr� > T Œlargest� then
largest D r
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if largest ¤ i then
exchange T Œi � with T Œlargest�
MAX-HEAPIFY.T; largest/

To build a max-heap, we can start at the bottom of the tree, go up, and put every small element we encountered
down using MAX-HEAPIFY.

BUILD-MAX-HEAP(T )
T:size D T: length
for i D bT: length =2c to 1 do

MAX-HEAPIFY.T; i/

At any level l (root has level 0 and leaves have level l D h), the number of nodes of a heap is at most 2l . For a
node of level l , h0 D h � l is the “height” of the node as used in Cormen’s book. It is easy to see that for a complete
binary tree Th of height h, we have 2l D dn=2h�lC1e for any l D 0; 1; : : : ; h. Indeed

n

2h�lC1
D
2hC1 � 1

2h�lC1
D

1

2�l
2hC1 � 1

2hC1
D 2l

�
1 �

1

2hC1

�
so that

l n

2h�lC1

m
D 2l :

Thus for a heap, every height h0 has at most 2l D dn=2h
0C1e nodes. The cost of BUILD-MAX-HEAP is then

blgncX
h0D0

l n

2h
0C1

m
O.h0/ D O

0@n blgncX
h0D0

h0

2h
0

1A D O  n 1X
h0D0

h0

2h
0

!
D O.n/:

By the property of max-heaps, the root is the largest element of the heap. So to sort an array using heaps, we can
first build a max-heap, then put the root at the end of the array, i.e. exchange the root with the last element, and then
run MAX-HEAPIFY.T; 1/, to put second largest element in the root. We can then repeat the above procedure until a
two-element heap remains. The running time is O.n lgn/.

Algorithm 3.4.1 Heapsort

HEAPSORT(T )
BUILD-MAX-HEAP.T /

for i D T: length to 2 do
exchange T Œ1� with T Œi �
T: size D T: size�1
MAX-HEAPIFY.T; 1/

3.4.1 Priority Queues

We can easily see that max-heaps can be used to implement priority queues. A max-priority queue is a queue, in
which the order of the elements are determined by their key values. It is a data structure Q supporting the following
operations:

� MAXIMUM.Q/: return the first element of the queue.

� EXTRACT-MAX.Q/: remove and return the first element of the queue.

� INSERT.Q; x/: insert the element x into the queue.

� INCREASE-KEY.Q; x; k/: increase the value of x to the new value k.

The implementation is as Algorithm 3.4.2. The running times of the four operations are
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� MAXIMUM.Q/: ‚.1/.

� EXTRACT-MAX.Q/: O.lgn/.

� INSERT.Q; x/: O.lgn/.

� INCREASE-KEY.Q; x; k/: O.lgn/.

Algorithm 3.4.2 Max-Priority Queue

MAXIMUM(Q)
return QŒ1�

EXTRACT-MAX(Q)
if Q:size < 1 then

error “heap underflow”

max; QŒ1� D QŒ1�; QŒsize�

Q: size D Q: size�1
MAX-HEAPIFY.Q; 1/

return max

INSERT(Q; k)
Q: size D Q: sizeC1
QŒQ: size� D �1
INCREASE-KEY.Q;Q: size; k/

INCREASE-KEY(Q; i; k)
if k < QŒi� then

error “new key is smaller than current key”

QŒi� D k

while i > 1 and QŒPARENT.i/� < QŒi� do
exchange QŒi� with QŒPARENT.i/�

i D PARENT.i/
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4 Graph Theory and Graph Algorithms

4.1 Basic Definitions and Properties

We use G D .V;E/ to denote a graph. Often we will assume that the graph is simple. This means it does not contain
self-loops or multiple edges. What is the maximum number of edges jEj possible for a simple graph? If every vertex
v 2 V is connected to all other jV j � 1 vertices, then the total number of edges is jV j � .jV j � 1/=2. Thus, we have
jEj � jV j � .jV j � 1/=2.

Bipartite Graphs G D .V;E/ is called bipartite if V is the union of two disjoint sets X and Y where every edge in
E is of the form .x; y/ with x 2 X and y 2 Y . The matching problem can be solved in polynomial time. However,
the matching problem for tripartite graph is NP-complete.

Vertex Colorings A vertex coloring of G is a map f W V ! C from the set of vertices V to a set of colors C . A
coloring is proper if and only if for each edge .a; b/ 2 E, we have f .a/ ¤ f .b/. The chromatic number X.G/ is the
minimum number of colors in a proper coloring of G. If we fix the jC j, then the problem of finding proper coloring is
NP-complete.

Planar Graphs A graph is planar if there is no overlapping edge when draw it on a plane. The four color theorem
says that four colors are enough for planar graphs for the proper coloring problem. However, the problem for a general
graph is still NP-complete.

Subgraphs G0 D .V 0; E 0/ is a subgraph of G if V 0 � V and E 0 � E. G0 is a spanning subgraph if V 0 D V . If
V 0 � V , then the subgraph induced by V 0 is GŒV 0� D .V 0; E 0/ where E 0 D f.u; v/ 2 E j u; v 2 V 0g. If E 0 � E,
then the subgraph induced by E 0 is GŒE 0� D .V 0; E 0/, where V 0 D fv 2 V j 9e 2 E 0 such that v 2 eg.

Graph isomorphisms G D .V;E/ and G0 D .V 0; E 0/ are isomorphic if there is a bijection f W V ! V 0 between
vertices of G and G0 such that u is adjacent to v if and only if f .u/ is adjacent to f .v/, i.e. .u; v/ 2 E if and only if
.f .u/; f .v// 2 E 0. The problem of determining whether two graphs are isomorphic is NP.

Complete Graphs A complete graph is a simple undirected graph in which every pair of distinct vertices is connected
by a unique edge. We denote the complete graph of n vertices byKn. A complete bipartite graph or biclique is a special
kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set.

Degrees The degree of a vertex v, denoted by d.v/, is the number of edges incident with v. In a simple graph the
degree of any v is at most jV j � 1. We define

ı.G/ D min
v2V

d.v/ and �.G/ D max
v2V

d.v/:

Proposition 4.1. X
v2V

d.v/ D 2jEj:

Proof. Consider the incidence matrix representation of the graph. Each row v has d.v/ 1s. This implies that the total
number of 1s in the incidence matrix is

P
v d.v/. Each column e has two 1s. We can sum by columns and the total

number of 1s is also 2jEj.

Proposition 4.2. In any graph G D .V;E/, the number of vertices of odd degrees is even.

Proof. Let Z=Z2 D f0; 1g denote the group of order 2. Let’s partition V into vertices of odd degrees A D fv 2 V j
d.v/ D 1g and even degrees B D fv 2 V j d.v/ D 0g. ThenX

v2A

d.v/C
X
v2B

d.v/ D 2jEj )
X
v2A

d.v/ D 2jEj �
X
v2B

d.v/ D 0 � 0 D 0:
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Thus the number of terms must be even, i.e. jAj D 0.

Graph Representations The adjacency matrix of a graph G D .V;E/ is the jV j � jV j matrix A such that Aij D 1
if .i; j / 2 E and 0 otherwise. Note that A is symmetric, with 0 on the diagonals (for simple graph). A graph can also
be represented by the incidence matrix M . It is the jV j � jEj matrix such that

M.v; e/ D

8<:1 v 2 eI

0 otherwise.

Note that the sum of elements in a row is the degree of that vertex, while the sum in a column is always 2.

Proposition 4.3. Let A be the adjacency matrix of a graph G. Then Ak.s; t/ is the number of walks of length k from
s 2 V to t 2 V .

Proof. Let Nk.v; w/ be the number of walks from v to w with k edges, and let Nk.v; wIu/ be the number of walks
from v to w with k edges whose second-to-last vertex is u. We prove by induction. The theorem is true for k D 1.
Suppose it is true for k. We have

NkC1.v; w/ D
X
u2V

Nk.v; wIu/ D
X
u2V

Nk.v; u/A.u;w/ D
X
u2V

Ak.v; u/A.u;w/ D AkC1.v; w/:

Paths A walk is a list of vertices w D .v1; : : : ; vk/ such that .vi ; viC1/ 2 E for 1 � i < k. A walk may contain
loops. A walk is closed if v1 D vk . A cycle is a closed walk. A path is a walk in which the vertices are distinct. A
trail is a walk in which all edges are distinct. The relation a � b if there is a walk from a to b is an equivalent relation
on the graph G. The equivalent classes are called connected components. Denote !.G/ the number of components of
G. G is connected if !.G/ D 1. The components C1; : : : ; Cr of G induce connected subgraphs.

Theorem 4.4. A graph is bipartite if and only if it has no odd cycle.

Proof. Necessity. Let G D X [Y be a bipartite graph. Every walk alternates between X and Y , so every return to the
original starting set happens after an even number of steps. Hence G has no odd cycle.

Sufficiency. Let G D .V;E/ be a graph with no odd cycle, and suppose G is connected (if not then just apply the
argument to each component). We shall construct a bipartition of G. Let u 2 V be any vertex in G, and for each
v 2 V , let f .v/ be the minimum length of a uÝ v path. Since we assume G is connected, f .v/ is well-defined for
each v 2 V .

Let X D fv 2 V W f .v/ D 0g and Y D fv 2 V W f .v/ D 1g. If X or Y contains an edge e D vv0, then there
would be a closed odd walk using a shortest uÝ v path, the edge vv0, and the reverse of a shortest uÝ v0 path, since
0C 0C 1 D 1 and 1C 1C 1 D 1. See Fig. 8. Hence X and Y are independent sets. Also X [Y D V , so G is indeed
a bipartite graph.

4.2 Trees

A graph with no cycle is acyclic. A forest is an acyclic graph. A tree is a connected acyclic graph. A leaf is a vertex
of degree 1. A spanning subgraph of G is a subgraph with vertex set V.G/. A spanning tree is a spanning subgraph
that is a tree.

Suppose G D C1 [ C2 [ � � � [ Cr . Suppose e D .u; v/ 2 E such that u 2 Ci ; v 2 Cj . Let !.G/ denote the
number of connected components of G.
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Figure 8: Illustration for the proof of Theorem 4.4. There should be no edge in X or Y , otherwise there would exist
odd cycle in graph G.

� If i D j then !.G C e/ D !.G/

� If i ¤ j then !.G C e/ D !.G/ � 1.

Suppose G D .V;E/ is acyclic with components C1; C2; : : : ; Cr . Let n D jV j; e D .u; v/ 2 E where u 2 Ci and
v 2 Cj .

� If i D j then G C e contains a cycle

� If i ¤ j then G C e is still acyclic and !.G C e/ D !.G/ � 1, and G has n � k edges.

Take r random edges E D fe1; : : : ; erg. We claim Gi D .V; fe1; : : : ; eig/ has n � i components. We prove by
induction. If i D 0 then G0 has no edges, so it has n components. If i > 0, then GiC1 is acyclic. Gi remains acyclic.
It follows that ei joins vertices in distinct components of Gi . Gi has one less component of Gi�1. r D n � k.

If T is a tree with n vertices, then

1. it has n � 1 edges

2. it has at least 2 vertices of degree 1.

Proof. Let s be the number of vertices of degree 1 in T . For the treeX
v2V

d.v/ D 2.n � 1/:

Then
2n � 2 D

X
v2V

d.v/ D
X
v2V�1

d.v/C s � 2.n � s/C s

We have
2n � 2 � 2n � s) s � 2:

Theorem 4.5. If jV j D n and jEj D n � 1, then the following statements are equivalent:

� G is connected;

� G is acyclic;

� G is a tree.

e is a cut edge if !.G � e/ > !.G/, i.e. removing e would increase the connected components of G.
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Theorem 4.6. e D .u; v/ is a cut edge if and only if e is not on any cycle.

Corollary 4.7. A connected graph is a tree if and only if every edge is a cut edge.

Corollary 4.8. Every finite connected graph G contains a spanning tree.

Proof. If there are no cycles, then we are done. If there is a cycle, delete one of its edges. Then the graph remains
connected. Repeat this deleting process and the process must terminate because the number of edges is finite. On
termination we have a spanning tree.

4.3 Basic Graph Algorithms

4.3.1 Breath First Search

The BFS algorithm puts every neighbors (except for those already visited) of every vertex into the queue. Thus, it will
start by exploring all neighbors of s, and then it will explore all neighbors of the first neighbors of s...

Algorithm 4.3.1 Breadth First Search

BFS(G, s)
s: color D GRAY; s: d D 0; s:� D NIL

for each vertex u 2 V n fsg do
u: color D WHITE; u: d D1; u:� D NIL

Q D ¿; ENQUEUE.Q; s/

while Q ¤ ¿ do
v D DEQUEUE.Q/

for each u 2 Adj Œv� do
if u: color == WHITE then

u: color D GRAY

u: d D v: dC1
u:� D v

ENQUEUE.Q; u/

v: color D BLACK

The BFS algorithm enqueues every vertex at most once, and hence dequeue every vertex at most once. The
operations of enqueuing and dequeuing take O.1/ time, and so the total time devoted to queue operations is O.V /.
Because the procedure scans the adjacency list of each vertex only when the vertex is dequeued, it scans each adjacency
list at most once. Since the sum of the lengths of all the adjacency lists is ‚.E/, the total time spent in scanning
adjacency lists is O.E/. Thus the total running time of BFS is O.V CE/.

4.4 Minimum Spanning Trees

Given a connected, undirected graph G D .V;E/ with weight w W E ! R, we’d like to find an acyclic subset T of E
that connects all the vertices (a spanning tree) whose weight

w.T / D
X
e2T

w.e/

is minimal. How do we find all edges of a minimum spanning tree? The following theorem provides a mean. It says
that if we have any subset U � V , then the edge with minimum weight connecting any u 2 U and any v 2 V n U
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must be part of a minimum spanning tree. If it is not in the MST, then we can find another edge e0 with larger weight
connecting U and V n U . Deleting e0 and adding e yields a spanning tree with smaller total weight.

Theorem 4.9. Let U � V be any subset of vertices of G. Let e be the edge with the smallest weight w.e/ connecting
U and V n U , i.e. e D arg min.u;v/fw.u; v/ j u 2 U and v 2 V n U g. Then e is part of the minimum spanning tree.

Proof. Suppose by contradiction T is a minimum spanning tree not containing e D .u; v/. Since T is a spanning tree,
this implies that it contains a unique path between u and v. This path must contain an edge e0 connecting U and V nU
that is different from e D .u; v/. This path together with e D .u; v/ forms a cycle inG. T Ce�e0 is another spanning
tree with w.T C e � e0/ < w.T /, contradicting to the assumption that T is a minimum spanning tree.

4.4.1 Prim’s Algorithm

In light of Theorem 4.9, we see how we can find a minimum spanning tree: start with the source vertex U0 D fsg and
find the minimum weight edge .s; u1/ that connects s. Let U1 D fs; u1g. Then for all edges connecting U1 find the
minimum edge with vertex u2 2 V n U1. Let U2 D fs; u0; u1g and so on, until we get to UjV j D V . In symbol

unC1 D arg minfw.u; v/ j u 2 Un; v 2 V n Ung and UnC1 D Un [ funC1g:

This is the Prim’s algorithm. However, to efficiently implement this idea, we need a little tweak. Since we need to
select the minimum-value vertex from V n Un each time, we can use a min-priority queue to do this.

Algorithm 4.4.1 Prim’s Algorithm

PRIM(G, w, s)
for each v 2 V do

v: key D1; v:� D NIL

s: key D 0; Q D V
while Q ¤ ¿ do

u D EXTRACT-MIN.Q/

for each v 2 Adj Œu� do
if v 2 Q and w.u; v/ < v: key then

v: key D w.u; v/
v:� D u

The running time of Prim’s algorithm depends on how we implement the min-priority queue Q. If we implement
Q as a binary min-heap, we can use the BUILD-MIN-HEAP procedure to perform the initializations in O.V / time.
The body of the while loop executes jV j times, and since each EXTRACT-MIN operation takes O.lgV / time, the
total time for all calls to EXTRACT-MIN is O.V lgV /. The for loop executes O.E/ times altogether, since the sum
of the lengths of all adjacency lists is 2jEj. Within the for loop, we can implement the test for membership in Q
in constant time by keeping a bit for each vertex that tells whether or not it is in Q, and updating the bit when the
vertex is removed from Q. The assignment in the second-to-last line involves an implicit DECREASE-KEY operation
on the min-heap, which a binary min-heap supports in O.lgV / time. Thus, the total time for Prim’s algorithm is
O.V lgV CE lgV / D O.E lgV /.

4.4.2 Kruskal’s Algorithm

Kruskal’s algorithm (Algorithm 4.4.2) makes use of Theorem 4.9 in a different way. The idea is to first sort the edges
by weight in ascending order. Then the minimal edge e1 must be in some minimum spanning tree: just take U in
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Theorem 4.9 to be any of the two endpoints of e1. The second smallest edge e2 is also in some MST: we can take
U to be any of the two endpoints of e2 that is not in e1. In general, we scan the sorted list of E and include e into
our minimum spanning tree as long as it does not connect two vertices that are already in the same component. The
algorithm mainly spends time sorting the edges, so the total running time is O.E lgE/. Since jEj � jV j2, we have
lgE D O.lgV /, so we can restate the running time of Kruskal’s algorithm as O.E lgV /, which is the same as Prim’s
algorithm.

Algorithm 4.4.2 Kruskal’s Algorithm

KRUSKAL(G, w)
A D ¿
for each vertex v 2 V do

MAKE-SET.v/

E = SORT.E;w; ascending D TRUE/

for each edge .u; v/ 2 E do
if FIND-SET.u/ ¤ FIND-SET.v/ then

A D A [ f.u; v/g

UNION.u; v/

return A

4.5 Single-Source Shortest Paths

The single-source shortest path problem is concerned with finding the shortest path from one source vertex s to all
other reachable vertices. Without loss of generality, in the following we assume that our directed graph G D .V;E/

at consideration is connected. The weight of a path p D hs; v0; v1; : : : ; vki is the sum of the weight of all the edges in
p:

!.p/ D w.s; v0/C w.v0; v1/C � � � C w.vk�1; vk/:

We are interested in finding the function
d� W V ! R;

where for each v 2 V , d�.v/ is the weight of the shortest path from s to v, i.e. d�.v/ D minfw.p/ j p W s Ý vg.
Below we shall construct the function

d W V ! R

to approximate d� and gradually improve values of d towards d�. We use � W V ! V to denote the predecessor
function. We shall also construct optimal � along the way.

First we will set d.v/ D 1 for all v 2 V n fsg and d.s/ D 0 for the source. This way our algorithms can begin
with the source s. This is the INITIALIZE-SINGLE-SOURCE procedure.

INITIALIZE-SINGLE-SOURCE(G, s)
for each vertex v 2 V do

d.v/ D1

�.v/ D NIL

d.s/ D 0

The next question is, how do we improve d? Well, for any edge .u; v/ 2 E, we can ask whether going from s to v
through u (i.e. try this different path) can reduce the current estimate d.v/. Namely, we can let

d.v/ D min
˚
d.v/; d.u/C w.u; v/

	
: (2)
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This is called the “relaxation” procedure.

RELAX(u, v, w)
if d.v/ > d.u/C w.u; v/ then

d.v/ D d.u/C w.u; v/

�.v/ D u

4.5.1 The Bellman-Ford Algorithm

The Bellman-Ford algorithm is simple: for each edge e 2 E, relax e, and do this for jV j � 1 times.

Algorithm 4.5.1 Bellman-Ford Algorithm

BELLMAN-FORD(G,w, s)
INITIALIZE-SINGLE-SOURCE.G; s/

for i D 1 to jV j � 1 do
for each edge .u; v/ 2 E do

RELAX.u; v; w/

for each edge .u; v/ 2 E do Q detect negative weight cycles

if d.v/ > d.u/C w.u; v/ then
return FALSE

return TRUE

The real question is, why does it work?
Pick any vertex vk 2 V , and consider an optimal path p D hs; v0; v1; : : : ; vki leading to vk . The crucial point is

that, hs; v0; : : : ; vj i must be the optimal path leading to vj for any vertex vj along p. For if we can find a shorter path
leading to vj , then we can substitute hs; v0; : : : ; vj i with this shorter path, so that we get a shorter path leading to vk ,
contradicting to optimality of p. This implies

w.p/ D w.s; v0/„ ƒ‚ …Cw.v0; v1/C w.v1; v2/C � � � C w.vk�1; vk/
D d�.v0/C w.v0; v1/„ ƒ‚ …Cw.v1; v2/C � � � C w.vk�1; vk/
D d�.v1/C w.v1; v2/„ ƒ‚ …C � � � C w.vk�1; vk/
D d�.v2/C � � � C w.vk�1; vk/

D � � �

D d�.vk/:

Remember that we are assuming p D hs; v0; v1; : : : ; vki is optimal, and we derived the conclusion that each subpath
s ! v0 ! � � � ! vj must also be optimal for j D 0; : : : ; k � 1. During the first pass, we relaxed .s; v0/ 2 E
among all edges in E. We don’t know which is .s; v0/, but since we relaxed them all, we are sure that we must relaxed
this particular edge. After the first pass we have d.v0/ D d�.v0/. Similarly, during the second pass, we relaxed
.v0; v1/ 2 E among all edges in E. After this pass we have d.v1/ D d�.v0/C w.v0; v1/ D d�.v1/,...and so on.

The running time of the Bellman-Ford algorithm is clearly O.VE/.

4.5.2 Dijkstra’s Algorithm

Dijkstra’s algorithm works on graphs with non-negative weights. It is actually quite similar to Prim’s algorithm. See
Algorithm 4.5.2.
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Algorithm 4.5.2 Dijkstra’s Algorithm

DIJKSTRA(G,w,s)
INITIALIZE-SINGLE-SOURCE.G; s/

S D ¿;Q D V
while Q ¤ ¿ do

u D EXTRACT-MIN.Q/; S D S [ fug

for each vertex v 2 Adj Œu� do
RELAX.u; v; w/

(a) Neighbors (black nodes) of a single vertex (the white node) is
the set of vertices adjacent to it. (b) Neighbors (black nodes) of a subset (white nodes) of V .

Figure 9: Neighbors of subsets of vertices

Again, why does it work? To facilitate our analysis, for any single vertex u 2 V we define the neighbors of u,
denoted by �.u/, to be Adj Œu�, and we define the neighbors for any U D fu1; : : : ; ung � V , �.U / D �.u1; : : : ; un/,
to be

S
u2U Adj Œu� n U . See Fig. 9 for illustrations. Note that at each while loop u D EXTRACT-MIN.Q/ D

EXTRACT-MIN.�.U //, since all other vertices have infinity values.
The algorithm begins by setting d.v/ D 1 for v 2 V n fsg and d.s/ D 0. Start from the source s, and set

d.v/ D w.s; v/ for each v 2 �.s/. At this point it may be that d.v/ D d�.v/ for several v that are neighbors of s. We
don’t know how many of them become optimal at this first pass, but one thing we do know is that at least for

u1 D arg minfd.v/ j v 2 �.s/g

it must be that d.u1/ D d�.u1/. Any other path from s to u1 must pass �.s/, and since d.v/ � d.u1/ for all v 2 �.s/,
this can only increase the cost. Next, let S1 D fs; u1g and relax all vertices in �.u1/. We assert for

u2 D arg minfd.v/ j v 2 �.s; u1/g

we have d.u2/ D d�.u2/. The key observation is that any path p from s to u2 must pass some vertex in �.s; u1/ D
�.s/ [ �.u1/:

(1) it would either pass s and u1 to u2 2 �.s; u1/;

(2) or pass through some vertex v 2 �.u1/ to u2;

(3) or otherwise pass through some vertex v 2 �.s/.

We then have w.p/ � d.v/ � d.u2/ for all v 2 �.s/ [ �.u1/, so going through v can only increase the cost.
Since w.p/ � d.u2/ for any p W s Ý u2, we have established that d.u2/ D d�.u2/. Note where relaxation of
u1 enters into the picture: after relaxation of u1, each d.v/ for v 2 �.s; u1/ is the optimal value on the subset
fp W s Ý v j p \ S1 ¤ ¿g.

In general, after we have identified the vertices with optimal value Sn D fs; u1; : : : ; ung and relaxed un, we can
identify the next optimal vertex by

unC1 D arg minfd.v/ j v 2 �.Sn/g:
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d.unC1/ is then optimal, since there is some v 2 N .Sn/ on any path p W s Ý unC1, so w.p/ � d.v/ � d.unC1/. We
are able to make this statement because we have made the assumption that the edge weights are all non-negative, so
the value of the path is no less than the value of any vertex on the path.

Running time Dijkstra’s algorithm calls three min-priority queue operations: INSERT (implicit in “Q D V ”),
EXTRACT-MIN and DECREASE-KEY (implicit in RELAX). The algorithm calls both INSERT and EXTRACT-MIN

once per vertex. Because each vertex u 2 V is added to set S exactly once, each edge in the adjacency list Adj Œu� is
examined in the for loop exactly once during the course of the algorithm. Since the total number of edges in all the
adjacency lists is jEj, this for loop iterates a total of jEj times, thus the algorithm calls DECREASE-KEY at most jEj
times overall.

The running time of Dijkstra’s algorithm depends on how we implement the min-priority queue. Consider first
the case in which we maintain the min-priority queue by taking advantage of the vertices being numbered 1 to jV j.
We simply store v: d in the vth entry of an array. Each INSERT and DECREASE-KEY operation takes O.1/ time, and
each EXTRACT-MIN operation takes O.V / time (since we have to search through the entire array), for a total time of
O.V 2 CE/ D O.V 2/.

If the graph is sufficiently sparse–in particular, E D o.V 2= lgV /–we can improve the algorithm by implementing
the min-priority queue with a binary min- heap. Each EXTRACT-MIN operation then takes time O.lgV /. As before,
there are jV j such operations. The time to build the binary min-heap is O.V /. Each DECREASE-KEY operation takes
time O.lgV /, and there are still at most jEj such operations. The total running time is therefore O..V C E/ lgV /,
which isO.E lgV / if all vertices are reachable from the source. This running time improves upon the straightforward
O.V 2/-time implementation if E D o.V 2= lgV /.

Relationship with BFS and Prim’s algorithm Dijkstra’s algorithm resembles both breadth-first search (Sec-
tion 4.3.1) and Prim’s algorithm for computing minimum spanning trees (Section 4.4.1). It is like breadth-first search
in that set S corresponds to the set of black vertices in a breadth-first search; just as vertices in S have their final
shortest-path weights, so do black vertices in a breadth-first search have their correct breadth-first distances. Dijkstra’s
algorithm is like Prim’s algorithm in that both algorithms use a min-priority queue to find the “lightest” vertex outside
a given set (the set S in Dijkstra’s algorithm and the tree being grown in Prim’s algorithm), add this vertex into the set,
and adjust the weights of the remaining vertices outside the set accordingly.

4.6 All-Pairs Shortest Paths

In this subsection, we discuss algorithms for finding all-pairs shortest paths in directed, weighted graphs. For conve-
nience we assume that the vertices are numbered 1; 2; : : : ; jV j D n. Our input is the n � n weight matrix W D .wij /
where

wij D

8̂̂<̂
:̂
0 if i D j

w.i; j / if .i; j / 2 E

1 if .i; j / … E:

Our goal is to compute the function d� W V � V ! R, or equivalently the matrix D� D .d�ij / where d�ij is the optimal
value between vertex i and j . We shall use some d W V � V ! R to approximate d�. To keep track of the optimal
paths we shall also compute the predecessor matrix … D .�ij /, where �ij D NIL if i D j or there is no path from i

to j , and otherwise �ij is the predecessor of j on some shortest path from i .
As a first thought, we may try to run a single-source shortest path algorithm jV j times to find the shortest path

between each vertex i and j . If the weights are non-negative, then we can use Dijkstra’s algorithm, which gives us
a running time of O.V 3/ if we use linear-array implementation of the min-priority queue, and O.VE lgV / if we use
the min-heap implementation. If there are negative weights, then we have to use the Bellman-Ford algorithm, which
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gives us a running time of O.V 2E/. On dense graphs this is O.V 4/. Here we investigate whether we can have better
methods.

4.6.1 Matrix Multiplication

How do we tackle the problem of all-pairs shortest path? Let’s fix i and j and consider the optimal path p W i Ý j

whose length is at most m. We use d�m.i; j / to denote the optimal value for p W i Ý j that has length most m. As
before, the crucial observation is that, since p W i Ý j is optimal, for any other vertex k on p the path p0 W i Ý k is
the optimal path between vertex i and k, where p0 has length at most m � 1. In particular, for j ’s predecessor v we
should have d.i; v/ D d�m�1.i; v/ along p. So if we have the data d�m�1.i; v/ for all vertices v 2 V , then

d�m.i; j / D min
v2V

˚
d�m�1.i; v/C w.v; j /

	
:

Similarly, to calculate d�m�1.i; v/ for any v 2 V we do

d�m�1.i; v/ D min
x2V

˚
d�m�2.i; x/C w.x; v/

	
and so on. This leads us all the way back to d�0 .i; v/, which we define as

d�0 .i; v/ D

8<:0 i D v

1 i ¤ v:

Example 4.10. For m D 1, d�1 .i; v/ D minx2V fd�0 .i; x/C w.x; v/g D w.i; v/, and for m D 2

d�2 .i; v/ D min
x2V
fd�1 .i; x/C w.x; v/g D min

x2V
fw.i; x/C w.x; v/g

D

8<:w.i; v/ if x� D i

w.i; x�/C w.x�; v/ if x� ¤ i:

To calculate d�3 .i; v/, we just need to consider d�2 .i; x/ and w.x; v/ etc. We already stored all the information about
path with length at most 2 in d�2 , so we do not need to recalculate them again.

So, given d�0 .i; j /, we are able to compute d�1 .i; j /, and then d�2 .i; j /, d
�
3 .i; j /; : : : until d�n�1.i; j / D d�.i; j /.

At each step we can do this for all i; j 2 V , so in matrix notation, once we have D�0 , we can compute D�1 D W , then
D�2 , then D�3 ; : : : until D�n�1 D D

�.
Algorithm 4.6.1 computes D�m D

�
d�m.i; j /

�
from D�m�1 D

�
d�m�1.i; j /

�
for all i; j 2 V . We note that the

procedure is very similar to matrix multiplication, where we have C in place of min and � in place of C, i.e. it would
be D�m.i; j / D D�m.i; j /CD

�
m�1.i; v/ � W.v; j /. As in Cormen et al. 2009, we can borrow the notation for matrix

multiplication and write EXTEND-SHORTEST-PATHS.D�m�1; W / as D�m�1 �W .
We can do EXTEND-SHORTEST-PATHS n � 1 times to solve the problem of all-pairs shortest paths. In matrix

notations, this is W , W �W , W �W �W and so on, until W n�1.
There are three for loops in Algorithm 4.6.1, and counting the for loop in Algorithm 4.6.2, the total running time

of Algorithm 4.6.2 is O.n4/.
In fact, we can do better: since EXTEND-SHORTEST-PATHS is associative, we don’t have to “multiply” once at a

time: we can “multiply” the output of each run with itself as W 2, W 4; : : :. This gives us a running time of ‚.n3 lgn/.

We can view the dynamic programming strategy as first restricting ourselves to smaller spaces where it is rela-
tively easy to search for the (approximate) solutions, and then gradually enlarge the spaces (relax the constraints). In
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Algorithm 4.6.1 Extend Shortest Paths

EXTEND-SHORTEST-PATHS(D�m�1,W )
n D number of rows in D�m�1
let D�m be a new n � n matrix
for i D 1 to n do

for j D 1 to n do
D�m.i; j / D1

for v D 1 to n do
D�m.i; j / D minfD�m.i; j /;D

�
m�1.i; v/CW.v; j /g

return D�m

Algorithm 4.6.2 All-Pairs Shortest Paths - Slow Version

SLOW-ALL-PAIRS-SHORTEST-PATHS(W )
n D number of rows in W
D�1 D W

for m D 2 to n � 1 do
let D�m be a new n � n matrix
D�m D EXTEND-SHORTEST-PATHS.D�m�1; W /

return D�n�1

Algorithm 4.6.3 All-Pairs Shortest Paths - Faster Version

FASTER-ALL-PAIRS-SHORTEST-PATHS(W )
n D number of rows in W
D�1 D W; m D 1

while m < n � 1 do
let D�2m be a new n � n matrix
D�2m D EXTEND-SHORTEST-PATHS.D�m;D

�
m/

m D 2m

return D�m
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Section 4.6.1, for any pair i and j we approximate the optimal path p� W i Ý j by the sequence p�0 ; p
�
1 ; p

�
2 ; : : : until

p�n�1 D p�. These approximations are not independent of each other. There is a dependence of problems on smaller
subproblems, so that previous approximations can help in finding the next approximations.

4.6.2 The Floyd-Warshall Algorithm

The Floyd-Warshall algorithm (Algorithm 4.6.4) uses a different strategy. Rather than approximate D� by D�m
(shortest paths that use only m or less edges), m D 0; : : : ; n � 1, It approximates D� by shortest paths that use
only the first f1; 2; : : : ; kg vertices, and let k goes from 0 to n to get better approximations. Let p W i Ý j is
such a shortest path between i and j , and denote the value of the path by d�

k
.i; j /. Either k is not in p, so that

d�
k
.i; j / D d�

k�1
.i; j /, or k is in p, for which d�

k
.i; j / D d�

k�1
.i; k/C d�

k�1
.k; j /, i.e. the subpath from i to k must

be optimal within Pk.i; k/ D fp W i Ý k j len.p/ � k � 1g and the subpath from k to j must be optimal within
Pk.k; j / D fp W k Ý j j len.p/ � k � 1g, and the value of d�

k
.i; j / is the sum of the values of the two subpaths. In

summary

d�k .i; j / D

8<:wij k D 0

min
˚
d�
k�1

.i; j /; d�
k�1

.i; k/C d�
k�1

.k; j /
	

k � 1:

Algorithm 4.6.4 Floyd-Warshall Algorithm

FLOYD-WARSHALL(W )
n D number of rows in W
D�0 D W

for k D 1 to n do
let D�

k
D
�
d�
k
.i; j /

�
be a new n � n matrix

for i D 1 to n do
for j D 1 to n do

d�
k
.i; j / D min

˚
d�
k�1

.i; j /; d�
k�1

.i; k/C d�
k�1

.k; j /
	

return D�n

Since there are three for loops in Algorithm 4.6.4, the running time is ‚.n3/.
To obtain the shortest paths, we can compute the matrix …0, …1, : : :, …n D … along the way of computing D�,

where �ij is the predecessor of the vertex j on a shortest path from i to j . �k.i; j / 2 …k is the the predecessor of the
vertex j on a shortest path from i to j with the constraint that all intermediate vertices are in f1; : : : ; kg. For k D 0

we define

�0.i; j / D

8<:NIL if i D j or .i; j / … E

i if .i; j / 2 E

For k � 1, we observe that for the path i Ý j , if k is actually not in the path, then �k.i; j / D �k�1.i; j /. If k is
indeed in the path, then �k.i; j / D �k�1.k; j /.

4.6.3 Transitive Closure of a Directed Graph

Definition 4.11 (Transitive Closure). Given a directed graphG D .V;E/ with vertex V D f1; 2; : : : ; ng, the transitive
closure of G is the graph G D .V;E/ where for all i; j 2 V we put .i; j / in E if in G there is a path from i to j .

We can compute the transitive closure using a procedure that is similar to Floyd-Warshall algorithm. Define tk.i; j /
to be 1 if there is a path from i to j with all intermediate vertices in f1; : : : ; kg, and 0 otherwise. Our goal is to compute
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Tn D .Tn.i; j //, and put .i; j / in E if tn.i; j / D 1. For k D 0 we define

t0.i; j / D

8<:0 .i; j / … E

1 .i; j / 2 E

and we can compute tk.i; j / as

tk.i; j / D tk�1.i; j / _ Œtk�1.i; k/ ^ tk�1.k; j /�:

TRANSITIVE-CLOSURE(G)
let T0 D .t0.i; j // be a new n � n matrix
for i D 1 to n do

for j D 1 to n do
if .i; j / 2 E then

t0.i; j / D 1

else
t0.i; j / D 0

for k D 1 to n do
let Tk D .tk.i; j // be a new n � n matrix
for i D 1 to n do

for j D 1 to n do
tk.i; j / D tk�1.i; j / _ Œtk�1.i; k/ ^ tk�1.k; j /�

return Tn

The algorithm runs in ‚.n3/ time.

4.6.4 Johnson’s Algorithm

Johnson’s algorithm finds shortest paths between all pairs in O.V 2 lgV C VE/ time. For sparse graphs, it is asymp-
totically faster than either repeated squaring of matrices or the Floyd-Warshall algorithm. The algorithm either returns
a matrix of shortest-path weights for all pairs of vertices or reports that the input graph contains a negative-weight
cycle. Its uses as subroutines both Dijkstra’s algorithm and the Bellman-Ford algorithm.

Given a graph G D .V;E/ with weight w W E ! R, The algorithm works as follows:

1. First add a new vertex s to the graphG D .V;E/, and jV j new edges connecting s to each v 2 V . Set the weight
of .s; v/ 2 E to be 0. Then run the Bellman-Ford algorithm with s as the source vertex, to find the function
h W V ! R that gives shortest path weight from s to each v 2 V .

2. Reweight each edge .u; v/ as bw.u; v/ D w.u; v/Ch.u/�h.v/. Since h.v/ is the optimal value obtained by the
Bellman-Ford algorithm, we have h.v/ � h.u/C w.u; v/. Consequently bw.u; v/ � 0 for any edge .u; v/ 2 E.
Also, under this new weight, the shortest path between any two vertices does not change.

3. Remove s and added edges, and for each vertex v 2 V run Dijkstra’s algorithm with source v on the reweighted
graph.

4. Finally, subtract .h.u/ � h.v// from computed d�.i; j / for every edge .u; v/ 2 E to get the original optimal
value.

To verify the claim in Item 2, consider any path p D hx; v1; : : : ; vn; yi between x and y. The new weight of the
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path is

bw.p/ D bw.x; v1/C bw.v1; v2/C � � � C bw.vn; y/
D Œw.x; v1/C h.x/ � h.v1/�C Œw.v1; v2/C h.v1/ � h.v2/�C � � � C Œw.vn; y/C h.vn/ � h.y/�

D w.p/C h.x/ � h.v1/C h.v1/ � h.v2/C � � � C h.vn/ � h.y/

D w.p/C h.x/ � h.y/;

so
arg min

p
bw.p/ D arg min

p
w.p/:

If we implement the min-priority queue in Dijkstra’s algorithm by a Fibonacci heap, Johnson’s algorithm runs in
O.V 2 lgV C VE/ time. The simpler binary min-heap implementation yields a running time of O.VE lgV /, which is
still asymptotically faster than the Floyd-Warshall algorithm if the graph is sparse.
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length i 1 2 3 4 5 6 7 8 9 10
price pi 1 5 8 9 10 17 17 20 24 30

Table 2: An example of a price table for the rod cutting problem.

5 Dynamic Programming

Dynamic programming is a powerful technique for solving optimization problems. It relies on a simple principle, the
principle of optimality: if a path from a to b is an optimal path, then for any point c on the path from a to b, the
sub-path from c to b must be the optimal path from c to b. Thus, we can construct solutions to bigger problems from
smaller problems. We can first work out the small problems (e.g. optimal path from c to b), store them, and then
derive the values for bigger problems from smaller one. Instead of deriving the optimal value to the original solution,
it constructs a whole value function f .n/ for every input size n.

5.1 Rod Cutting

The rod cutting problem is: given a rod a length n and a price table for each length 1; : : : ; n � 1; n, how to cut the rod
so as to maximize the total revenue? An example of a price table is Table 2.

There are 2n�1 different ways of cutting a rod of length n: at every cut point in f1; : : : ; n � 1g we can decide
whether or not to give a cut. At first the problem seems to be untrackable, but dynamic programming can come to
rescue. The key observation is that, after we make the first cut, we divide the rod into two pieces. The value of this cut
is the price of the first piece plus the value of the second piece. Let f .n/ denote the optimal value function. Then

f .n/ D max
1�i�n

fpi C f .n � i/g:

This gives us a practical way for finding the optimal value function f .n/: since the value for larger n depends on the
value for smaller n, we can first work out f .n/ for small n, store them in a table, and then use these values to calculate
f .n/ for larger n. For example, the first few values for f .n/ is shown in Table 3. In calculating f .n/, we make use of
all entries in the array Œ0; f .1/; : : : ; f .n � 1/�, so the running time of the algorithm is ‚.n2/.

CUT-ROD(p; n)
let f Œ0 : : n� be a new array
f Œ0� D 0

for j D 1 to n do
v D �1

for i D 1 to j do
v D max.v; pŒi �C f Œj � i �/

f Œj � D v

return f Œn�

To keep track of the optimal solution, in the second for loop we can record i D arg max1�i�nfpi C f .n� i/g for
each n D 1; : : : ; n in an array s, then to print the optimal cut we call

while n > 0 do
print sŒn�
n D n � sŒn�.
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n 0 1 2 3 � � �

f .n/ 0 p1 maxfp1 C p1; p2g maxfp1 C f .2/; p2 C f .1/; p3g � � �

Table 3: The optimal value function f .n/ for the rod cutting problem.

5.2 Longest Increasing Subsequence

In longest increasing subsequence (LIS) problems, we are given a finite sequence of integers A and we want to find
the length of the longest subsequence of A such that all elements of the subsequence are in increasing order. Let’s use
some examples to explain the terms:

� A (finite) sequence A D .a1; a2; : : : ; an/ is just an array. Example: A D .10; 22; 9; 33; 21; 50; 41; 60/.

� The term subsequence is the same as in mathematics: a subsequence of A is .aik / for some 0 < i1 < i2 < � � � <
n. Examples of subsequences of A are .10/; .10; 22/; .10; 9; 33/; .33; 21; 60/, and .50; 60/.

� An increasing subsequence of A is a subsequence .aik / of A such that ai1 < ai2 < � � � . Examples are
.10/; .9; 33; 41/; .33; 41; 60/; .33; 50; 60/; .41/ etc.

� A longest increasing subsequence of A is the largest increasing subsequence of A. Note that LIS may not be
unique. For example, A has two longest increasing subsequence .10; 22; 33; 50; 60/ and .10; 22; 33; 41; 60/.

Let f .a1; : : : ; an/ denote the optimal value function that takes an array as input and returns the length of a LIS of the
array. The dynamic programming relationship is

f .a1; : : : ; aj / D 1Cmaxff .a1; : : : ; ai / j 1 � i < j; ai < aj g: (3)

Namely, if a subsequence is optimal, then after we removed the last element, the remaining subsequence should be
optimal as well. We define maxfg D 0. We can start by working out small problems: for n D 1, f .a1/ D 1.
For n D 2, if a1 < a2 then f .a1; a2/ D 2 but if a1 > a2 then f .a1; a2/ D 1. For n D 3, if a2 < a3, then
f .a1; a2; a3/ D 1C f .a1; a2/, etc. At position j , we look at all previous elements fa1; : : : ; aj�1g in the array, and
find among those that are smaller than aj the one with largest value. We build the value table this way from left to
right, until n. See Table 4 for an example. It is clear that the running time of this algorithm is O.n2/. Note that
there is constraint in the relationship, namely we have to search among elements that are smaller than aj . Otherwise
if ai > aj , the optimal subsequence up to ai concatenated by aj would not constitute a feasible solution. Thus, the
constraint has the effect of discarding some points in the search space.

LIS(a)
n D len.a/

if n D 0 then
return 0

f D Œ1 : : 1�

for j D 2 to n do
v D 0

for i D 1 to j do
if aŒi � < aŒj � then

v D max.v; f Œi �/

f Œj � D v C 1

return max.f /
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index i j

A 10 22 9 33 21 50 41 60
f 1 2 1 3 2 4 4 5

Table 4: An example of value table for the longest increasing subsequence problem.

Figure 10: Three rotations of a box.

5.3 Box Stacking

The statement of the box stacking problem is as follows: you are given n types of boxes, where each box is defined by
it’s height, width and depth. You have an infinite supply of every type of box and you can rotate a box any way you
like (exchanging height, width and depth). Two boxes can be stacked on top of each other if the width of the lower box
is strictly smaller than the width of the upper box and the depth of the lower box is strictly smaller than the depth of
the upper box (this prevents one from stacking infinitely many boxes of the same type) Write a dynamic programming
algorithm that determines the maximal height you can achieve when stacking boxes, given the dimensions of the
boxes.

How do we solve the box stacking problem? First note that, for a rectangular box, it can have three different base
areas (see Fig. 10):

width � height; width � depth; height � depth:

We have infinite supply of each type of the n boxes, but it suffices to have 3 of them for each of the boxes. Thus we
consider stacking of the 3n boxes. A box with large base area cannot be stacked onto a box with small base area, so
we may want to consider boxes with larger base areas, before we consider how to stack small boxes on other ones.

Let’s put all 3n boxes in an array B , and sort the array B in decreasing order by its elements’ base areas. We
suppose we have three functions h W B ! RC, w W B ! RC and d W B ! RC that can return us the height, width
and depth of a box b 2 B . By width and depth of a box we mean its sides that touch the ground and constitute its base
area, and by height we mean the side orthogonal to the base area. Let

f W B ! RC

denote the optimal value function on B , i.e. it is the maximum height possible when the input is on top of a stack.
Since f .b/ � h.b/, we can initialize f .b/ to h.b/. What is the dynamic programming relationship? Let S denote an
optimal stack where some b 2 B is on the top. After we remove b, the remaining stack S � b should also be optimal.
If it is not, then S D .S � b/C b cannot be optimal as well. Note however that we have a constraint here for S : in
order for b to be on the top, its width and depth must be strictly smaller than those of the box below. In summary, the
dynamic programming relationship is (recall B is sorted)

f .bj / D h.bj /Cmax
˚
f .bi / j i < j; w.bi / < w.bj /; d.bi / < d.bj /

	
: (4)
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Thus, using Eq. (4) we can first calculate f for first few elements in B , then use them to calculate f for later elements
in B . Finally, the optimal value is the maximum of f on B .

We see that the box stacking problem is very similar to the longest increasing subsequence problem (Section 5.2).
In LIS we append larger elements one after another, and in box stacking problem we stack smaller boxes on top of
others. For an optimal LIS s, the subsequence obtained by removing the last element in s should be optimal as well.
In box stacking, removal of the top box of an optimal stack S should result in an optimal sub-stack. Both problems
feature constraints as we have seen in Eq. (3) and Eq. (4). These constraints shrinks our search spaces, but they do not
prevent us from applying dynamic programming techniques.

5.4 Longest Common Subsequence

Given two (finite) sequences x and y, we say that the sequence z is a common subsequence of x and y if it is
a subsequence of x and a subsequence of y. In the longest common subsequence (LCS) problem, we are given
two sequence of strings x D .x1; x2; : : : ; xm/ and y D .y1; y2; : : : ; yn/, and we wish to find the longest common
subsequence of them. x and y may have different lengths. Again, let’s think about small problems first. If either x or
y is empty, then the algorithm should return 0. If x D .x1/ and y D .y1/ both have length 1, then the problem reduces
to judging whether x D y. If x D .x1; x2/ and y D .y1/, then the length of the LCS is either 0 or 1, by comparing y1
to x1 and x2. Let f Œ.x1 : : xi /; .y1 : : yj /� denote the optimal value function for subsequences .x1 : : xi / and .y1 : : yj /.
We have the relation

f Œ.x1 : : xi /; .y1 : : yj /� D

8̂̂̂̂
<̂
ˆ̂̂:
0 if i D 0 or j D 0;

f Œ.x1 : : xi�1/; .y1 : : yj�1/�C 1 if i; j > 0 and xi D yj ;

max
�
f Œ.x1 : : xi /; .y1 : : yj�1/�; f Œ.x1 : : xi�1/; .y1 : : yj /�

�
if i; j > 0 and xi ¤ yj :

Given this relation, we can then construct a table of size m � n and fill in the table from small i and j to larger
one, until we have f .m; n/. As we can see in the code, the running time of the algorithm is ‚.mn/.

LCS(X; Y )
m; n D X: length; Y: length
Let f Œ0 : :m; 0 : : n� be a new table
for i D 1 to m do

f Œi; 0� D 0

for j D 1 to n do
f Œ0; j � D 0

for i D 1 to m do
for j D 1 to n do

if xi == yj then
f Œi; j � D f Œi � 1; j � 1�C 1

else if f Œi � 1; j � > f Œi; j � 1� then
f Œi; j � D f Œi � 1; j �

elsef Œi; j � D f Œi; j � 1�

return f Œm; n�
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6 Markov Chains

We discuss Markov chains in this section.....we will mostly follow Wasserman 2004... we assume the state space is
discrete, either X D f1; : : : ; N g or X D f1; 2; : : : ; g, and the time is discrete.

6.1 Definitions

Definition 6.1. A stochastic process fXn W n 2 T g is called a Markov chain if

PfXn D x j X0; : : : ; Xn�1g D PfXn D x j Xn�1g

for all n and all x 2 X. We shall use P to denote the transition matrix. Its .i; j / element is

pij D PfXnC1 D j j Xn D ig:

We require pij � 0 and
P
j pij D 1.

We let
p
.n/
ij D PfXmCn D j j Xm D ig

be the probability of going from state i to state j in n steps. Let P .n/ be the matrix whose .i; j / element is p.n/ij . Note
P .1/ D P .

Theorem 6.2 (Chapman-Kolmogorov equation). The n-step probabilities satisfy

p
.mCn/
ij D

X
k2X

p
.m/

ik
� p

.n/

kj
:

Proof.

p
.mCn/
ij D PfXmCn D j j X0 D ig

D

X
k2X

PfXmCn D j;Xm D k j X0 D ig

D

X
k2X

PfXmCn D j j Xm D k;X0 D igPfXm D k j X0 D ig

D

X
k2X

PfXmCn D j j Xm D kgPfXm D k j X0 D ig

D

X
k2X

p
.m/

ik
p
.n/

kj
:

This is the equation for matrix multiplication. Take m D 1; n D 1 we get

P .2/ D P .1/ � P .1/ D P � P D P2;

and so in general we have P .n/ D Pn.

Definition 6.3. We say that i reaches j (or j is accessible from i ) if p.n/ij > 0 for some n � 0, and we write i ! j . If
i ! j and j ! i we write i $ j and we say that i and j communicate.
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The relation “i � j if i $ j ” is an equivalence equation, so it partitions the state into disjoint classes. If all states
communicate with each other, then we say the Markov chain is irreducible. A set of states is closed if, once you enter
that set you never leave. A closed set consisting of a single state is called an absorbing state, or a sink. For example,
for X D f1; 2; 3; 4g and

P D

0BBB@
1
3

2
3

0 0
2
3

1
3

0 0
1
4

1
4

1
4

1
4

0 0 0 1

1CCCA
the classes are f1; 2g, f3g and f4g. State 4 is an absorbing state.

Definition 6.4. State i is recurrent or persistent if

PfXn D i for some n � 1 j X0 D ig D 1:

Otherwise, it is transient.

If a state i is recurrent, then we will eventually return to that state. After the return, we can re-start the timer, so
once again we will eventually return to i . So a recurrent state is a state that will be visited infinitely many times.

Theorem 6.5. A state i is recurrent if and only if

1X
nD0

p
.n/
i i D1:

It is transient if and only if
1X
nD0

p
.n/
i i <1:

Proof. We define

In D

(
1 if Xn D i

0 if Xn ¤ i:

The number of times the chain is in state i is
P1
nD0 In. If it is recurrent, then the sum is infinity, so

E

"
1X
nD0

In j X0 D i

#
D

1X
nD0

E ŒIn j X0 D i � D
1X
nD0

P fIn D 1 j X0 D ig D
1X
nD0

p
.n/
i i D1:

For example, once can show that for this Markov chain

P D

0BBB@
0 0 1

2
1
2

1 0 0 0

0 1 0 0

0 1 0 0

1CCCA
all states are recurrent, and for

P D

0BBBBBB@
1
2

1
2

0 0 0
1
2

1
2

0 0 0

0 0 1
2

1
2

0

0 0 1
2

1
2

0
1
4

1
4

0 0 1
2

1CCCCCCA
there are two classes of recurrent states, f1; 2g; f3; 4g and one class of transient state f5g. We list the following facts:
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1. If state i is recurrent and i $ j , then j is recurrent.

2. If state i is transient and i $ j , then j is transient.

3. A finite Markov chain must have at least one recurrent state.

4. The states of a finite, irreducible Markov chain are all recurrent.

5. (Decomposition theorem) the state space X can be written as the disjoint union

X D XT

[
X1

[
X2

[
� � �

where XT are the transient states and each Xi is a closed, irreducible set of recurrent states.

Example 6.6. Let’s consider a one dimensional random walk. The state space is X D Z and the transition probabil-
ities are (

pi;iC1 WD p D 1 � pi;i�1

pij D 0 otherwise:

All states communicate, hence either all states are recurrent or all are transient. We shall show that only for p D 1=2
that all states are recurrent, and for all p ¤ 1=2 all states are transient. To this end we compute

P1
nD0 p

.n/
00 . If we

start at 0 and return back to 0, then we must went through some even number of steps: same steps going forward and
backward. So this sum is equivalent to

P1
nD0 p

.2n/
00 . Now

p
.2n/
00 D

 
2n

n

!
pn.1 � p/n D

.2n/Š

nŠnŠ
pn.1 � p/n

and use Stirling’s formula
nŠ � nnC1=2e�n

p
2�

we have
p
.2n/
00 �

Œ4p.1 � p/�n
p
�n

:

If p D 1=2, then 4p.1 � p/ D 1 so
1X
nD0

p
.2n/
00 �

1
p
�n
D1;

which means all states are recurrent according to Theorem 6.5. If p ¤ 1=2, then 4p.1 � p/ < 1, so the series
converges, and consequently all states are transient.

Definition 6.7. Suppose we start at X0 D i . The recurrence time is

Ti i D minfn > 0 W Xn D ig;

assuming Xn ever returns to i , and we define Ti i D1 otherwise. The mean recurrence time of a recurrent state i is

EŒTi i � D
1X
nD1

nfi i .n/

where
fi i .n/ D PfX1 ¤ i; X2 ¤ i; : : : ; Xn�1 ¤ i; Xn D i j X0 D ig:

A recurrent state is null if EŒTi i � D1 and otherwise it is called non-null or positive.

Lemma 6.8. If a state is null and recurrent, then p.n/i i !1.
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Lemma 6.9. In a finite state Markov chain, all recurrent states are positive.

Definition 6.10. If p.n/i i D 0 whenever n is not divisible by d , and d is the largest integer with this property, then we
call d the period of state i , i.e. d D gcdfn W p.n/i i > 0g. State i is periodic if d.i/ > 1 and aperiodic if d.i/ D 1. A
state is ergodic if it is positive recurrent and aperiodic. A Markov chain is ergodic if all its states are ergodic.

Theorem 6.11. For any irreducible ergodic Markov chain, the limiting distribution �j D limn!1 p
.n/
ij ; j 2 X exists

and does not depend on i . It is the unique solution of PT… D ….

Example 6.12 (Gambler’s ruin problem). At each play, the gambler could win $1 with probability p and lose with
probability 1 � p. Suppose a gambler starts with $i . What is the probability that the gambler’s fortune will reach
value N before reaching 0? Let this probability be pi . Then as N !1,

pi D

8̂̂<̂
:̂
1 �

�
1 � p

p

�i
if p >

1

2
I

0 if p �
1

2
:

6.2 Markov chain Monte Carlo (MCMC)

Applications of MCMC:

� (Probability) Assume a finite state space� and a weight functionw W �! RC. The goal is to design a sampling
process which samples every element x 2 � with probability w.x/P

x2�w.x/
. The problem is that j�j D 2N could

be very large, so it may not be feasible to compute the sum in the denominator.

� (Optimization) Let� be a set of feasible solutions to an optimization problem. The goal is maxx2� f .x/. Using
MCMC, we can sample from the distribution

ƒ.x/ D
�f .x/

Z
; � > 1

where Z D
P
x2� �

f .x/. If � D 1, then the distribution ƒ is uniform and there is no information at all.
However, as we increase � the distribution becomes concentrated around the optimal solutions.

Definition 6.13. Let … be a probability distribution over �. A Markov chain is said to be reversible with respect to
… if

8x; y 2 �; ….x/pxy D ….y/pyx :

Define Q.x; y/ WD ….x/pxy . If the Markov chain is reversible, then Q.x; y/ D Q.y; x/. Thus we can represent
a reversible Markov chain with an undirected graph with weight Q.x; y/. Also note that

pxy D
Q.x; y/P
z

Q.x; z/
:

Q.x; y/ is called the ergodic flow. It is the amount of probability mass flowing from x to y given ….x/. The equation

….x/pxy D ….y/pyx

is called detailed balance. We ca use the equation to design pxy .
Gibbs distribution:

pG.x/ D
1

Z
e�ˇE.x/; ˇ D

1

kBT
:
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� High temperature corresponds to ˇ ! 0, and pG converges to uniform distribution.

� Low temperature corresponds to ˇ !1, and pG concentrates on the minimum of E.x/.

We want …i D pG.xi / D
1
Z
e�ˇE.xi /, where … D .…i / is the stationary distribution of the Markov chain. How

should we choose the transition probabilities pij ? Denote by Ni D N.xi / the expected number of times in which the
state xi is observed. We want

Ni / pG.xi /:

Consider one update of the Markov chain:

N
.tC1/
i D N

.t/
i C

X
j¤i

h
N
.t/
j pj i �N

.t/
i pij

i
:

The stationary conditions are (
N
.tC1/
i D N

.t/
i

Ni / pG.xi /:

We should have global balance X
j¤i

h
N
.t/
j pj i �N

.t/
i pij

i
D 0:

However, this is too complicated. Instead we impose that each term in the summation is zero (detailed balance):

N
.t/
j pj i D N

.t/
i pij 8i; j:

We want
pG.xj / � pj i D pG.xi / � pij 8i; j )

pij

pj i
D e�ˇŒE.xj /�E.xi /� D e�ˇ�Eji

Regardless of whether the state is continuous or discrete, all Markov chain methods consist of repeatedly applying
stochastic updates until eventually the state begins to yield samples from the equilibrium distribution. Running the
Markov chain until it reaches its equilibrium distribution is called burning in the Markov chain. After the chain has
reached equilibrium, a sequence of infinitely many samples may be drawn from the equilibrium distribution. They are
identically distributed, but any two successive samples will be highly correlated with each other. A finite sequence of
samples may thus not be very representative of the equilibrium distribution. One way to mitigate this problem is to
return only every n successive samples, so that our estimate of the statistics of the equilibrium distribution is not as
biased by the correlation between an MCMC sample and the next several samples. Markov chains are thus expensive
to use because of the time required to burn in to the equilibrium distribution and the time required to transition from
one sample to another reasonably decorrelated sample after reaching equilibrium. If one desires truly independent
samples, one can run multiple Markov chains in parallel. This approach uses extra parallel computation to eliminate
latency. The strategy of using only a single Markov chain to generate all samples and the strategy of using one Markov
chain for each desired sample are two extremes; deep learning practitioners usually use a number of chains that is
similar to the number of examples in a minibatch and then draw as many samples as are needed from this fixed set of
Markov chains. A commonly used number of Markov chains is 100.

Another difficulty is that we do not know in advance how many steps the Markov chain must run before reaching
its equilibrium distribution. This length of time is called the mixing time . Testing whether a Markov chain has reached
equilibrium is also difficult. We do not have a precise enough theory for guiding us in answering this question. Theory
tells us that the chain will converge, but not much more. If we analyze the Markov chain from the point of view of
a matrix A acting on a vector of probabilities v, then we know that the chain mixes when A t has effectively lost
all the eigenvalues from A besides the unique eigenvalue of 1. This means that the magnitude of the second-largest
eigenvalue will determine the mixing time. In practice, though, we cannot actually represent our Markov chain in
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terms of a matrix. The number of states that our probabilistic model can visit is exponentially large in the number
of variables, so it is infeasible to represent v, A, or the eigenvalues of A. Because of these and other obstacles, we
usually do not know whether a Markov chain has mixed. Instead, we simply run the Markov chain for an amount of
time that we roughly estimate to be sufficient, and use heuristic methods to determine whether the chain has mixed.
These heuristic methods include manually inspecting samples or measuring correlations between successive samples.1

1From Goodfellow, Bengio, and Courville 2016.
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7 Selected Topics

7.1 Introduction to Randomized Algorithms

Here we discuss some examples of randomized algorithms. We should largely follow Cormen et al. 2009 and Motwani
and Raghavan 1995. We distinguish between two types of randomized algorithms:

1. Las Vegas algorithm. It always produces the correct answer, but the running time is random.

2. Monte Carlo algorithm. The running time is bounded, but it has a chance of producing incorrect results.

Las Vegas algorithm can be converted to Monte Carlo algorithm by forcing it to output some random answer if a time
bound is reached. Conversely, if a Monte Carlo algorithm produces correct answer with positive probability, and an
efficient verification procedure exists for checking the answer, then we can run the Monte Carlo algorithm many times
until the correct answer is obtained.

7.1.1 Randomized Quicksort

It is easy to think up an alternative scheme for quicksort discussed in Section 3.3: instead of always picking the first
element or the last element as the pivot, why can’t we choose a random element as the pivot each time? This gives rise
to the randomized quicksort.

Algorithm 7.1.1 Randomized Quicksort

RANDQ(A, p, r)
if q < r then

q D RANDP.A; p; r/
RANDQ.A; p; q � 1/
RANDQ.A; q C 1; r/

RANDP(A, p, r)
i D RANDOM.p; r/

exchange AŒr� with AŒi�
return PARTITION.A; p; r/

It is an example of the Las Vegas algorithm, since it will eventually sort the input array just as quicksort does,
but its running time in terms of number of comparisons may be random. Let X be the total number of comparisons.
We shall derive that EŒX� D O.n lgn/. In our analysis We assume each element in the array is distinct. Let A D
fz1; z2; : : : ; zng denote the sorted array and let Zij D fzi ; : : : ; zj g.

Note that any zi and zj are compared at most once. This is because every element is only compared to some pivot
element, and after the call the pivot stays there and is never compared to any other elements in the array. Thus, we can
let Xij D 1Œzi is compared to zj � and then

X D

n�1X
iD1

nX
jDiC1

Xij :

Taking expectations we get

EŒX� D E

24n�1X
iD1

nX
jDiC1

Xij

35 D n�1X
iD1

nX
jDiC1

EŒXij � D
n�1X
iD1

nX
jDiC1

Pfzi is compared to zj g:
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So what is the probability of zi being compared to zj ? We recall that only pivots have the chance of being compared
to other elements in the array, so if zi is compared to zj , then at least one of them must be pivot. On the other hand, if
at some stage some zi < x < zj in Zij is chosen as the pivot, then zi and zj would be put into different partitions and
they will never be compared afterwards.

Prior to the point at which an element from Zij is chosen as a pivot, the whole set Zij is in the same partition.
Therefore any element ofZij is equally likely to be the first one chosen as a pivot. The setZij has j � iC1 elements,
so each has probability of 1=.j � i C 1/ of being chosen as the pivot. We then have

Pfzi is compared to zj g D Pfzi or zj is the first pivot chosen from Zij g

D Pfzi is the first pivot chosen from Zij g

C Pfzj is the first pivot chosen from Zij g

D
1

j � i C 1
C

1

j � i C 1

D
2

j � i C 1
:

Now

EŒX� D
n�1X
iD1

nX
jDiC1

2

j � i C 1

D

n�1X
iD1

n�iX
kD1

2

k C 1
.let k D j � i/

<

n�1X
iD1

nX
kD1

2

k

D

n�1X
iD1

O.lgn/

D O.n lgn/:

7.1.2 k-th Order Statistics

Recall how we obtain the maximum and minimum of an array:

MINIMUM(A)
min D AŒ1�
for i D 2 to len.A/ do

if min > AŒi� then
min D AŒi�

return min

and

MAXIMUM(A)
max D AŒ1�
for i D 2 to len.A/ do

if max < AŒi� then
max D AŒi�

return max
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The two procedures take O.n/ times, since we really have to go through each element of the array to determine
minimum or maximum.

Now, how do we find the median of the array? Recall when the length of the array n is odd, the median is the
i D .nC 1/=2th smallest element, while if n is even then the medians are at i D b.nC 1/=2c and i D d.nC 1/=2e
position in the sorted array. We could first sort the array and then take the middle element, but this would takeO.n lgn/
time. We now discuss a randomized algorithm that can find the k-th order statistics in expected O.n/ time.

The idea is the same as randomized quicksort: we choose one element from the array at random as the pivot and
put smaller elements on the left, larger elements on the right, by comparing each x 2 A with the pivot:

1. If the pivot is at the k-th position then it is the element we want to find.

2. Else if k is smaller than the size of the left array, then k must lies in the left sub-array and so we recursively call
our procedure on the left sub-array.

3. Else if k is larger than the size of the left array, then k must lies in the right sub-array and so we recursively call
our procedure on the right sub-array.

Algorithm 7.1.2 Randomized k-th Order Statistics

ORDERSTAT(A;p; r; k)
if p == r then

return AŒp�

q D RANDP.A; p; r/ Q randomly choose an element.

left-size D q � p C 1 Q size of the left sub-array.

if k == left-size then
return AŒq� Q 1. found the k-th order statistics.

else if k < left-size then Q 2. k-th order statistics on the left.

return ORDERSTAT.A; p; q � 1; k/

else Q 3. k-th order statistics on the right.

return ORDERSTAT.A; q C 1; r; .k � left-size//

In the following analysis, we assume all elements in the array are distinct. We let T .n/ denote the running time of
the algorithm. We shall prove that EŒT .n/� D O.n/. Since we pick an element randomly, the size of the left sub-array
can be 1; 2; : : : ; n with equal probability 1=n. We let

Xk D 1fthe left-subarray has exactly k elementsg; k D 1; 2; : : : ; n

so that EŒXk � D 1=n. We have

T .n/ �

nX
kD1

Xk � fT Œmax.k � 1; n � k/�CO.n/g

D

nX
kD1

Xk � T Œmax.k � 1; n � k/�CO.n/:
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Taking expectations, we get

EŒT .n/� � E

"
nX
kD1

Xk � fT Œmax.k � 1; n � k/�CO.n/g

#

D

nX
kD1

EŒXk � T Œmax.k � 1; n � k/��CO.n/

D

nX
kD1

EŒXk � � EŒT Œmax.k � 1; n � k/��CO.n/

D

nX
kD1

1

n
� EŒT Œmax.k � 1; n � k/��CO.n/

�
2

n

n�1X
kDbn=2c

EŒT .k/�CO.n/:

We used the fact that Xk and T Œmax.k � 1; n � k/� are independent.
Assume EŒT .n/� � cn for some constant c. Then

EŒT .n/� �
2

n

n�1X
kDbn=2c

ck C an

D
2c

n

0@n�1X
kD1

k �

bn=2c�1X
kD1

k

1AC an
D
2c

n

�
.n � 1/n

2
�
.bn=2c � 1/bn=2c

2

�
C an

�
2c

n

�
.n � 1/n

2
�
.n=2 � 2/.n=2 � 1/

2

�
C an

D
2c

n

�
n2 � n

2
�
n2=4 � 3n=2C 2

2

�
C an

D
c

n

�
3n2

4
C
n

2
� 2

�
D c

�
3n

4
C
1

2
�
2

n

�
�
3cn

4
C
c

2
C an

D cn �
�cn
4
�
c

2
� an

�
:

We want for sufficiently large n the last expression is at most cn, i.e. cn=4 � c=2 � an � 0. Re-arrange the terms

n �
c=2

c=4 � a
D

2c

c � 4a
:

So if we assume T .n/ D O.1/ for n < 2c=.c � 4a/, then EŒT .n/� D O.n/.

7.1.3 Universal Hashing

Any fixed hash function may be vulnerable to adversary attacks. The attacker can choose inputs that are all hashed
to the same slot, yielding an average retrieval time of ‚.n/. To address this problem, we can periodically switch to a
new random chosen hash function (we move all old addresses to new ones). To further avoid confusion, we quote a
post from https://math.stackexchange.com/questions/103107/universal-hashing:

57

https://math.stackexchange.com/questions/103107/universal-hashing


Yes, the hash table handler must guarantee that it goes to the same address when it tries to find data – the
same address that that hash table handler used when it stored that data in the hash table. So it must use
the same hash function both times.

If hypothetically the hash table handler were to roll the dice and pick a fresh new random hash function
for every new data item that came in ... well, as you pointed out, that would cause problems.

Each hash table is associated with one and only one hash function. Every key used to store data in that
hash table was hashed using that one hash function. Typically the hash table handler uses one chosen hash
function for millions of keys.

Many hash table handlers periodically switch from one hash function to some other new hash function.
Many hash table handlers – whether they use universal hashing or not – switch every time the number
of data items stored in the hash table doubles. In addition, as Tim Duff pointed out, hash table handlers
that use that use universal hashing also switch when they observe too many collisions. When a hash table
handler that uses universal hashing decides it is time to switch (for either reason), the hash table handler
rolls the dice and picks a new random hash function.

Every time the hash function changes, the hash table handler moves each and every data item out of the old
address (the address indicated by the old hash function) and into the new address (the address indicated
by the new hash function). Once all that shuffling around is complete, every data item stored in the hash
table is in an address entirely determined by its key and the current latest hash function. So then the hash
table handler can forget the old hash function, and do all new lookups using the new hash function.

Definition 7.1. Let H be a finite collection of hash functions that map a given universeU of keys into f0; 1; : : : ; m�1g.
Such a collection is said to be universal if for each pair of keys k; l 2 U , the number of hash functions h 2 H for
which h.k/ D h.l/ is at most jH j=m. In other words, if we randomly select an h from H , then the probability of
collision for this particular key pair .k; l/ is at most

number of h such that h.k/ D h.l/
total number of h’s

D
jH j=m

jH j
D
1

m

Equivalently,

8k; l 2 U; k ¤ l W P.collision/ D Ph2H .h.k/ D h.l// �
1

m
:

Suppose keys are all in the range 0 to p � 1 inclusive for some large prime p. A class of hash functions that is
universal is

Hpm D fhab W a 2 Z�p and b 2 Zpg;

where
hab.k/ D ..ak C b/ mod p/ mod m/ (5)

and
Zp D f0; 1; : : : ; p � 1g; Z�p D Zp n f0g:

Here is a proof of the claim. For any two distinct key pairs k and l from Zp , r D .ak C b/ mod p ¤ s D

.al C b/ mod p, because r � s � a.k � l/ mod p is not zero. The function

f W Zp ! Zp; f .k/ D .ak C b/ mod p (6)

is thus injective, so it is also bijective. Thus the probability that k and l collide is equal to the probability that
r � s mod m.
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In Zp , the maximum size of congruence class of Zm is at most dp=me (an example would be Z7 D f0; 1; 2; 3; 4; 5; 6g

and m D 3. Seven divided by three is two plus a remainder of one: 7 D 2� 3C 1, and we see that f0; 3; 6g has length
d7=3e D 3) Thus, for a given value of r , of the remaining p � 1 possible values of s 2 Zp n frg, the number of values
s such that s ¤ r and s � r mod m is at most

dp=me � 1 � ..p Cm � 1/=m/ � 1

D .p � 1/=m:

The inequality follows from the following lemma.

Lemma 7.2. Prove the following inequalities: la
b

m
�
aC .b � 1/

b

Proof. Let q D da
b
e. We have

q <
a

b
C 1

+

qb < aC b

+

.q � 1/b < a

+

.q � 1/b C 1 � a

+

qb � aC b � 1

+

q �
aC b � 1

b

We divide the right side by the size of Zp n frg, which is .p � 1/, to get the (upper bound) probability that
s � r mod m:

upper bound of jfs W s � r mod mgj
jZp n frgj

D
.p � 1/=m

.p � 1/
D
1

m
:

Thus we have proved that for any pair of distinct values k; l 2 Zp ,

Pfhab.k/ D hab.l/g �
1

m
;

so that Hpm is indeed universal.
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Figure 11: An example of a Bloom filter, representing the set x; y; z. The colored arrows show the positions in the
bit array that each set element is mapped to. The element w is not in the set x; y; z, because it hashes to one bit-array
position containing 0. For this figure, m D 18 and k D 3.

7.1.4 Bloom Filters2

We often want to test whether a given element is in a set. For example, to test whether a word has correct spelling,
we need to find if the word is in an English dictionary; in web scraping we need to test whether we have visited an
URL address etc. We could use hash table, but when the number of elements in the set becomes very large, the storage
requirement would also be huge. For email providers like Yahoo and Gmail, it has to test whether an email is a spam
email. One way to to that is to store all the spam email addresses in a hash table, and test whether a given email address
is in th hash table. But the hash table can grow to a size like hundreds of Gigabytes.

As another application, remember than when you register for a new account on some website, you may have the
experience of choosing a username. When you type-in a username the website may tell you that it is already taken by
somebody else. How can the website quickly determine whether a username is already taken? If we use linear search,
we have to compare the typed username to millions of names in the database one-by-one, which takes a lot of time.
If we use binary search tree to organize the usernames, then the search time is at best O.lgn/. However, with Bloom
filter, we are able determine whether a username is already taken in constant time! The price we may though, is that
there is a small probability of being wrong, namely falsely report that the username is already taken while in fact it is
not in the database.

Description of the Data Structure An empty Bloom filter is a bit array of m bits, all set to 0. There must also be
k different hash functions defined, each of which maps or hashes some set element to one of the m array positions,
generating a uniform random distribution. Typically, k is a constant, much smaller than m, which is proportional to
the number of elements to be added; the precise choice of k and the constant of proportionality of m are determined
by the intended false positive rate of the filter.

To add an element, feed it to each of the k hash functions to get k array positions. Set the bits at all these positions
to 1.

To query for an element (test whether it is in the set), feed it to each of the k hash functions to get k array positions.
If any of the bits at these positions is 0, the element is definitely not in the set – if it were, then all the bits would have
been set to 1 when it was inserted. If all are 1, then either the element is in the set, or the bits have by chance been
set to 1 during the insertion of other elements, resulting in a false positive. In a simple Bloom filter, there is no way to
distinguish between the two cases, but more advanced techniques can address this problem.

Removing an element from this simple Bloom filter is impossible because false negatives are not permitted. An
element maps to k bits, and although setting any one of those k bits to zero suffices to remove the element, it also
results in removing any other elements that happen to map onto that bit. Since there is no way of determining whether

2This part is taken from the Internet.
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Figure 12: The false positive probability p as a function of number of elements n in the filter and the filter size m. An
optimal number of hash functions k D .m=n/ ln 2 has been assumed.

any other elements have been added that affect the bits for an element to be removed, clearing any of the bits would
introduce the possibility for false negatives.

Space and Time Advantages While risking false positives, Bloom filters have a strong space advantage over other
data structures for representing sets, such as self-balancing binary search trees, tries, hash tables, or simple arrays or
linked lists of the entries. Most of these require storing at least the data items themselves, which can require anywhere
from a small number of bits, for small integers, to an arbitrary number of bits, such as for strings (tries are an exception,
since they can share storage between elements with equal prefixes). However, Bloom filters do not store the data items
at all, and a separate solution must be provided for the actual storage. Linked structures incur an additional linear space
overhead for pointers. A Bloom filter with 1% error and an optimal value of k, in contrast, requires only about 9:6 bits
per element, regardless of the size of the elements. This advantage comes partly from its compactness, inherited from
arrays, and partly from its probabilistic nature. The 1% false-positive rate can be reduced by a factor of ten by adding
only about 4:8 bits per element.

However, if the number of potential values is small and many of them can be in the set, the Bloom filter is easily
surpassed by the deterministic bit array, which requires only one bit for each potential element. Note also that hash
tables gain a space and time advantage if they begin ignoring collisions and store only whether each bucket contains
an entry; in this case, they have effectively become Bloom filters with k D 1.

Bloom filters also have the unusual property that the time needed either to add items or to check whether an item
is in the set is a fixed constant, O.k/, completely independent of the number of items already in the set. No other
constant-space set data structure has this property, but the average access time of sparse hash tables can make them
faster in practice than some Bloom filters. In a hardware implementation, however, the Bloom filter shines because its
k lookups are independent and can be parallelized.

To understand its space efficiency, it is instructive to compare the general Bloom filter with its special case when
kD 1. If k D 1, then in order to keep the false positive rate sufficiently low, a small fraction of bits should be set,
which means the array must be very large and contain long runs of zeros. The information content of the array relative
to its size is low. The generalized Bloom filter (k greater than 1) allows many more bits to be set while still maintaining
a low false positive rate; if the parameters (k and m) are chosen well, about half of the bits will be set, and these will
be apparently random, minimizing redundancy and maximizing information content.
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Probability of False Positive Assume a hash function selects each array position with equal probability. If m is
the number of bits in the array, the probability that a certain bit is not set to 1 by a certain hash function during the
insertion of an element is

1 �
1

m
:

If k is the number of hash functions and each has no significant correlation between each other, then the probability
that the bit is not set to 1 by any of the hash functions is�

1 �
1

m

�k
:

If we have inserted n elements, the probability that a certain bit is still 0 is�
1 �

1

m

�kn
:

The probability that it is 1 is therefore

1 �

�
1 �

1

m

�kn
:

Now test membership of an element that is not in the set. Each of the k array positions computed by the hash functions
is 1 with a probability as above. The probability of all of them being 1, which would cause the algorithm to erroneously
claim that the element is in the set, is given as

p D

 
1 �

�
1 �

1

m

�kn!k
�

�
1 � e�kn=m

�k
: (7)

Be careful that p.k/ D f .g.k/; k/ where g.k/ D 1 � e�kn=m. The derivative of p with respect to k is

dp

dk
D
@f

@g

dg

dk
C
@f

@k
D

�
1 � e�

n
mk
�k 0@ln

�
1 � e�

n
mk
�
C

n
m
ke�

n
mk�

1 � e�
n
mk
�1A :

We want to find k so as to minimize the false positive probability p.k/, so we would like to find k such that p0.k/ D 0.
The expression in the right parenthesis must be zero. Since each k in the expression has n=m in front of it, we just
need to find the solution k� for

ln
�
1 � e�k

�
C

ke�k�
1 � e�k

� D ln
�
1 �

1

ek

�
C

k

ek � 1
D 0 (8)

and then set m
n
k� for the original problem. The solution to Eq. (8) is guessed to be ln 2. Hence, the optimal number of

hash functions k that minimizes the false positive probability is

k� D
m

n
ln 2: (9)

Substitute Eq. (9) into Eq. (7), we get

p� D
�
1 � e� ln2�m

n ln2
D 2�

m
n ln2

) lnp D �
m

n
.ln 2/2:

From above, given the target false positive probability p, we can get the optimal number of bits per element:

m

n
D �

lnp
.ln 2/2

� �1:44 log2 p

and the optimal number of hash functions as

k D �
lnp
ln 2
D � log2 p:
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7.1.5 Karger’s min-cut Algorithm3

Let G D .V;E/ be a connected, undirected multigraph with n vertices. A multigraph may contain multiple edges
between any pair of vertices. A cut in G is a set of edges C � E whose removal results in G being broken into two or
more components. A min-cut is a cut of minimum cardinality. We now study a simple algorithm for finding a min-cut
of a graph.

We repeat the following step: pick an edge uniformly at random and merge the two vertices at its end-points ().
If as a result there are several edges between some pairs of (newly formed) vertices, retain them all. Edges between
vertices that are merged are removed, so that there are never any self-loops. We refer to this process of merging the
two end-points of an edge into a single vertex as the contraction of that edge. With each contraction, the number of
vertices of G decreases by one. The crucial observation is that an edge contraction does not reduce the min-cut size
in G. This is because every cut in the graph at any intermediate stage is a cut in the original graph. The algorithm
continues the contraction process until only two vertices remain; at this point, the set of edges between these two
vertices is a cut in G and is output as a candidate min-cut.

CONTRACT(G)
while jV j > 2 do

Choose e 2 E uniformly at random
G D G=e

return the only cut C in G

Let n D jV j and let k D jC j be the min-cut size. We fix our attention on a particular min-cut C with k edges.
Notice that each vertex must have at least k edges, otherwise there would be a min-cut of size less than k, so that there
are at least kn=2 edges in the graph.

Let Ei denote the event of not picking an edge of C at the i th step, for 1 � i � n � 2. The probability that the
edge randomly chosen in the first step is in C is at most k=.nk=2/ D 2=n, so that

P ŒE1� � 1 �
2

n
:

Assuming that Ei occurs, during the second step there are at least k.n � 1/=2 edges, so the probability of picking an
edge in C is at most 2=.n � 1/, so that

P ŒE2 j E1� � 1 �
2

n � 1
:

At the i th step, the number of remaining vertices is n � i C 1. The size of the min-cut is still at least k, so the graph
has at least k.n � i C 1/=2 edges remaining at this step. Thus ]

P

24E2 j

i�1\
jD1

Ej

35 � 1 � 2

n � i C 1
:

The probability that no edge of C is ever picked in the process is

P

"
n�2\
iD1

Ei

#
D

n�2Y
iD1

P

24Ei j

i�1\
jD1

Ej

35 � 2Y
iD1

�
1 �

2

n � i C 1

�
D

2

n.n � 1/
:

The probability that the output is a min-cut is larger than 2=n2. Thus we can repeat the algorithm n2=2 times, making
independent random choices each time. The probability that a min-cut is not found in any of the n2=2 attempts is at
most �

1 �
2

n2

�n2=2

<
1

e
:

Further executions of the algorithm will make the failure probability arbitrarily small.
3This part is taken from Motwani and Raghavan 1995.
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7.2 The PageRank algorithm

We now discuss the PageRank algorithm used by Google (Brin and Page 1998) to rank web pages returned by keyword
queries. Our notation will be different from that of the original paper (Page et al. 1999).

Let G D .V;E/ denote the directed graph of web pages on the Internet, where V D f0; 1; : : : ; ng, and .i; j / 2 E
if in page i there is a link to page j . The goal of the PageRank algorithm is to compute a function

r W V ! RC

on V such that r.i/ is large if

1. either many web pages link to i (i.e. the in-degree of i is large), or

2. among links to i there are pages with high in-degrees.

To achieve these desired properties, we use a simple Markov chain model. Let pij denote the probability of
jumping from i to j , so that

P
j2V pij D 1. We use simple heuristics to set pij :

� Page 0 2 V is the Google homepage and we assume it is linked from and to all pages in V . A surfer, no matter
where he is, jumps to 0 when he is browsing the web with probability 1� c. Here c is a constant (we let it stand
for “continue”). Thus

pi0 D 1 � c for any i 2 V:

� For any page i 2 V , the probabilities of jumping from i to all the links in i are equal. In notation

pij D
c

ni
1Œi ! j �; j 2 V n f0g (10)

where ni is the number of links in i (out-degrees). In this wayX
j2V

pij D pi0 C
X

j2V nf0g

pij D .1 � c/C
c

ni
� ni D .1 � c/C c D 1:

In particular, for page 0 we have p0j D c=n for all j D 1; : : : ; n.

Let P denote the transition matrix .pij /, and let … D .…i /j2V denote the stationary distribution on V . We have
… D PT…, i.e. … is an eigenvector of PT . The stationary distribution … can be obtained by first initializing the
vector randomly to some ….0/ and then repeatedly applying the matrix PT , i.e. … D lim

n!1
.PT /n….0/. For j ¤ 0 we

have
…j D …0 � p0j C…1 � p1j C � � � C…n � pnj D .1 � c/

c

n
C

X
i2V nf0g

…i �
c

ni
1Œi ! j �:

Algorithm 7.2.1 PageRank Algorithm

1: PAGERANK(G)
2: Randomly initialize some distribution r W V ! RC on V
3: Let P D .pij / where pij is as in Eq. (10)
4: while not converge do
5: r D PT r

6: return the vector r W V ! RC

We can let r.j / WD …j �
c

n
so that we get the classical equation

r.j / D .1 � c/C c �
X

i2V nf0g

r.i/

ni
1Œi ! j �:
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We see that indeed r.j / would be large if there are many nonzero terms in the sum, i.e. 1Œi ! j � ¤ 0 for many
i 2 V n f0g, or some r.i/ is large in the summation.

7.3 Gradient Descent

Gradient descent is a popular numerical optimization technique for training neural networks. Here we present several
variants of the gradient descent algorithm.

7.3.1 Batch Gradient Descent

Repeat until convergence:

˘ � D � � � �
1

n
r�

nX
iD1

L.f .xi I �/; yi /

7.3.2 Stochastic Gradient Descent

Repeat until convergence:

1. Randomly sample one example i from the training set

2. � D � � �r�L.f .xi I �/; yi /

7.3.3 Mini-batch gradient descent

Repeat until convergence:

1. Randomly sample a minibatch of m examples from the training set

2. � D � � � �
1

m
r�

mX
iD1

L.f .xi I �/; yi /

7.3.4 Momentum

The momentum method uses physical heuristics to update the parameters. It views the cost J.�/ as energy, so that
�r�J.�/ is analogous to force. Consider a discrete-time setting. Let �t , vt , and at denote the position, velocity
and acceleration at time t respectively. Set the mass of the particle to 1 so that acceleration is equal to the force in
magnitude. The velocity at t is the velocity at time t � 1 plus the acceleration at time t � 1, and the position at time
t C 1 is the current position plus the velocity at time t :

vt D vt�1 C at�1; (11)

�tC1 D �t C vt : (12)

According to the analogy above, the update rule of the momentum method is given by
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Repeat until convergence:

1. Randomly sample a minibatch of m examples from the training set

2. v D ˛v � � �
1

m
r�

mX
iD1

L.f .xi I �/; yi /;

3. � D � C v

Here ˛ 2 Œ0; 1/ is a hyperparameter that determines how quickly the contributions of previous gradients exponen-
tially decay.

Nesterov momentum:

Repeat until convergence:

1. Randomly sample a minibatch of m examples from the training set

2. v D ˛v � � �
1

m
r�

mX
iD1

L.f .xi I � C ˛v/; yi /;

3. � D � C v

7.3.5 AdaGrad

Repeat until convergence:

1. Randomly sample a minibatch of m examples from the training set

2. g D � �
1

m
r�

mX
iD1

L.f .xi I �/; yi /

3. r D r C g ˇ g

4. � D � � �

ıC
p
r
ˇ g (division and square root applied element-wise)

7.3.6 RMSProp

Repeat until convergence:

1. Randomly sample a minibatch of m examples from the training set

2. g D �
1

m
r�

mX
iD1

L.f .xi I �/; yi /

3. r D �r C .1 � �/g ˇ g

4. � D � � �

ıC
p
r
ˇ g (division and square root applied element-wise)
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7.3.7 Adam

for t D 0 to M :

1. Randomly sample a minibatch of m examples from the training set

2. g D
1

m
r�

mX
iD1

L.f .xi I �/; yi /

3. v D Œˇ1v C .1 � ˇ1/g�=.1 � ˇt1/

4. r D Œˇ2r C .1 � ˇ2/g ˇ g�=.1 � ˇt2/

5. � D � �
�

ı C
p
r
ˇ v (operations applied element-wise)

Default settings of the 4 hyper-parameters proposed in Kingma and Ba 2014 are � D 0:001; ˇ1 D 0:9; ˇ2 D 0:999

and ı D 10�8.
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