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In this article, we give a detailed look at bilinear/sesquilinear forms in linear algebra.
We’re interested in conditions under which a form possesses an orthonormal basis. It turns
out that this is true if and only if it is (Hermitian) symmetric and positive definite (Theo-
rem 2.32). We show that the symmetry condition is due to symmetry of orthogonality. We
then discuss operators and quadratic forms using our theory of bilinear forms.
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1 Some Linear Algebra
Definition 1.1. A vector space with basis w is an ordered pair .V;w/ where V is a vector
space over some field F and w D .w1; w2; : : : ; wn/ is a basis of V . If v 2 V; v D x1w1 C

x2w2 C � � � C xnwn, then we use .x;w/ to denote v.

We let L .V / denote the set of all linear operators on V . For T 2 L .V / and .V;w/,
we use MT to denote the matrix of T with respect to w. If say .x;w/ 7! .y;w/ by T , then
x 7! y by MT .

Definition 1.2. The transpose of a matrix MT , denoted as Mt
T , is the matrix obtained by

interchanging rows and columns of MT . The complex transpose of MT is the matrix M�
T

obtained by taking complex conjugate of each entry of Mt
T . It is also called the adjoint of

MT .

Definition 1.3. Let MT be a matrix with respect to a real or complex vector space .V;w/.

� It is symmetric if MT DMt
T ;

� It is Hermitian (or self-adjoint) if MT DM�
T ;

� It is orthogonal if Mt
TMT D I ;

� It is unitary if M�
TMT D I .

Change of Basis
For two basis w and w0, let S be the linear operator that sends each wi to w0i , i.e., Swi D w0i
for i D 1; : : : ; n. Let P be the matrix of S with respect to .V;w/. It is called the base change
matrix.

Theorem 1.4. Let T 2 L .V /, and let w and w0 be two basis of V . Suppose MT is the
matrix of T with respect to .V;w/. Then the matrix of T with respect to .V;w0/ is given by
M0
T D P

�1MTP .

Proof. Let v 2 V be arbitrary and suppose T v D z, and v D .x;w/ D .x0;w0/, while
z D .y;w/ D .y0;w0/. Then

y DMT x (1)

y0 DM0
T x0: (2)

We show x D P x0 and y D P y0. A demonstrative example of this should be enough.
When V is 2-dimensional, w D .w1; w2/, w0 D .w01; w

0
2/, w

0
1 D aw1 C bw2; w

0
2 D cw1 C

dw2,

v D x1w1 C x2w2

D x01w
0
1 C x

0
2w
0
2

D x01.aw1 C bw2/C x
0
2.cw1 C dw2/

D .ax01 C cx
0
2/w1 C .bx

0
2 C dx

0
2/w2

(3)
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Thus x1 D ax01 C cx
0
2, x2 D bx

0
2 C dx

0
2, which is to say�

x1
x2

�
D

�
a c

b d

��
x01
x02

�
:

The proof of the general case has the same format, but are more cumbersome to write out.
Substitute x D P x0 and y D P y0 into Eq. (1) we have

P y0 DMTP x0 (4)

or
y0 D P �1MTP x0: (5)

Compare this to Eq. (2) we get the desired result.

2 Bilinear Forms and Sesquilinear Forms

Bilinear Forms
Definition 2.1. Let V be a real vector space. A bilinear form h�; �iF W V � V ! R is a
real-valued function defined on V � V that is linear in each variable:(
hv1 C v2; wiF D hv1; wiF C hv2; wiF

hrv; wiF D rhv;wiF

(
hv;w1 C w2iF D hv;w1iF C hv;w2iF

hv; rwiF D rhv;wiF

On Notation. The subscript notation is to remind readers that our definition of bilinear forms
is more general than dot product. We are going to investigate under what conditions a bilinear
form is indeed a dot product (i.e., has an orthonormal basis).

Definition 2.2. Given .V;w/, the matrix of the form MF is defined to be
�
hwi ; wj iF

�
.

Example 2.3. If V is 2-dimensional, w D .w1; w2/, then the matrix of the form is0@hw1; w1iF hw1; w2iF

hw2; w1iF hw2; w2iF

1A : (6)

Proposition 2.4. Given v1; v2 2 .V;w/, v1 D .x;w/, v2 D .y;w/, then

hv1; v2iF D xtMF y: (7)

Proof. 2-dimensional case should give readers more insights than using obscure sigma sum-
mations for a general proof. If v1 D x1w1 C x2w2, v2 D y1w1 C y2w2, then

hv1; v2iF D hx1w1 C x2w2; y1w1 C y2w2iF

D hx1w1; y1w1 C y2w2iF C hx2w2; y1w1 C y2w2iF

D x1y1hw1; w1iF C x1y2hw1; w2iF C x2y1hw2; w1iF C x2y2hw2; w2iF :

(8)
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On the other hand,

MF y D

0@hw1; w1iF hw1; w2iF

hw2; w1iF hw2; w2iF

1A0@y1
y2

1A D 0@y1hw1; w1iF C y2hw1; w2iF
y1hw2; w1iF C y2hw2; w2iF

1A ; (9)

so

xtMF y D
�
x1 x2

�0@y1hw1; w1iF C y2hw1; w2iF
y1hw2; w1iF C y2hw2; w2iF

1A
D x1y1hw1; w1iF C x1y2hw1; w2iF C x2y1hw2; w1iF C x2y2hw2; w2iF :

(10)

Proposition 2.5 (Effect of Changing Basis on Matrix of the Form). If the matrix of the
form is MF with respect to .V;w/, then the matrix of the form M0

F
with respect to .V;w0/

is equal to P tMFP , where P is the base change matrix.

Proof. Let v1 D .x;w/ D .x0;w0/ and v2 D .y;w/ D .y0;w0/. Then x D P x0 and y D P y0.
According to Proposition 2.4,

hv1; v2iF D xtMF y D .P x0/tMF .P y0/ D x0t.P tMFP /y0: (11)

Definition 2.6. The form is said to be symmetric if

hv1; v2iF D hv2; v1iF (12)

for any v1; v2 2 V . It is said to be skew-symmetric if hv1; v2iF D �hv2; v1iF for any
v1; v2 2 V .

Proposition 2.7. A bilinear form h�; �iF is symmetric if and only if its matrix MF is sym-
metric with respect to .V;w/ for any basis w.

Proof. First suppose MF is symmetric with respect to .V;w/, where w can be any basis of
V . Then for any v1 D .x1;w/; v2 D .y;w/,

hv1; v2iF D xt1MF y

D
�
xt1MF y

�t
D ytMt

F x1
D ytMF x1
D hv2; v1iF :

(13)

The proof of the other direction is almost the same. Suppose the form is symmetric. Given
.V;w/, let v1 D .x1;w/; v2 D .y;w/. Then

hv1; v2iF D xt1MF y D ytMF x1 D hv2; v1iF : (14)

Since xt1MF y is a real number, it is equal to its own transpose, so xt1MF y D
�
xt1MF y

�t .
The later is equal to ytMt

F
x1. We see from Eq. (14) that ytMt

F
x1 D ytMF x1, which implies

Mt
F
DMF .
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Sesquilinear Forms
Definition 2.8. Let V be a complex vector space. A sesquilinear form h�; �iF W V � V ! C
is a complex-valued function defined on V � V that is conjugate linear in the first variable
and linear in the second variable:(
hv1 C v2; wiF D hv1; wiF C hv2; wiF

hcv;wiF D Nchv;wiF

(
hv;w1 C w2iF D hv;w1iF C hv;w2iF

hv; cwiF D chv;wiF

Given .V;w/, the matrix of the form MF D
�
hwi ; wj iF

�
is defined the same way as in

the real case.

Proposition 2.9. Given v1; v2 2 .V;w/, v1 D .x;w/, v2 D .y;w/,

hv1; v2iF D x�MF y: (15)

Proposition 2.10 (Effect of Changing Basis on Matrix of the Form). If the matrix of the
form is MF with respect to .V;w/, then the matrix of the form M0

F
with respect to .V;w0/

is equal to P �MFP , where P is the base change matrix.

Definition 2.11. A sesquilinear form is called Hermitian symmetric if

hv1; v2iF D hv2; v1iF (16)

for any v1; v2 2 V .

Proposition 2.12. A sesquilinear form h�; �iF is Hermitian symmetric if and only if its matrix
MF is Hermitian with respect to .V;w/ for any basis w.

Exercise 2.13. Prove Proposition 2.9, Proposition 2.10, Proposition 2.12.

Corollary 2.14. h�; �iF is Hermitian symmetric if and only if hv; viF 2 R for all v 2 V .

Proof. If the form is Hermitian symmetric, then by definition hv; viF D hv; viF , thus the
number hv; viF is real. Conversely, if hv; viF 2 R , then given .V;w/, the matrix of the
form MF , and v D .x;w/,

hv; viF D x�MF x D .x�MF x/� D x�M�
F x: (17)

Thus we see MF DM�
F

, i.e., the matrix of the form is Hermitian. by Proposition 2.12, the
form is Hermitian symmetric.
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Orthogonality
Definition 2.15. Let h�; �iF be a bilinear form on a real vector space V or a sesquilinear form
on a complex vector space V . We say v1 is orthogonal to v2 if

hv2; v1iF D 0: (18)

Discussion 2.16. Here our definition of orthogonality doesn’t require symmetry or Hermitian
symmetry of the form. As a consequence, we have to take care of the order of v1 and v2.

Definition 2.17. The orthogonal complement of a subspace W of V , denoted by W ?, is the
subspace of all vectors v 2 V that are orthogonal to every vector in W :

W ? WD fv 2 V j hw; viF D 0 for all w 2 W g: (19)

Definition 2.18. The form is said to be nondegenerate if for every nonzero vector v, there
is a vector v0 such that hv0; viF ¤ 0. Otherwise it is said to be degenerate. It is said to be
nondegenerate on a subspace W if its restriction to W is a nondegenerate form.

Proposition 2.19. The form is nondegenerate on W if and only if W \W ? D f0g.

Proof. If v 2 W \W ? is a nonzero vector, then since v 2 W ?, hw; viF D 0 for all w 2 W .
This means that for this v 2 W , we cannot find a vector w inW such that hw; viF ¤ 0, thus
the form is degenerate on W . On the other hand, if the form is degenerate, then for some
vector v 2 W , hw; viF D 0 for all w 2 W . Thus v is also in W ?, and W \W ? contains
the nonzero vector v.

Corollary 2.20. The form is nondegenerate on V if and only if V ? D f0g.

Corollary 2.21. Let h�; �iF be a nondegenerate bilinear form or sesquilinear form on V , and
let v1 and v2 be vectors in V . If hw; v1iF D hw; v2iF for all vectors w in V , then v1 D v2.

Proof. Move the right side to the left side, and using linearity in the second slot, we see

hw; v1 � v2iF D 0 (20)

for all w 2 V . Thus v1 � v2 2 V ?. Since the form is nondegenerate, V ? D f0g. Hence
v1 � v2 D 0, v1 D v2.

Proposition 2.22. Let h�; �iF be a bilinear form or a sesquilinear form on V , and let MF be
its matrix with respect to .V;w/ for some basis w. Let v D .y;w/.

1. hw; viF D 0 for all w 2 V if and only if MF y D 0.

2. The form is nondegenerate if and only if MF is invertible.
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Proof. 1.

hw; viF for all w 2 V , xtMF y D 0 for all x 2 F n

,MF y D 0:
(21)

2. MF is not invertible if and only if there is y ¤ 0 such that MF y D 0 if and only if the
form is degenerate by Eq. (21).

Theorem 2.23. Let h�; �iF be a bilinear form or a sesquilinear form on V .

1. The form is nondegenerate on W if and only if V D W ˚W ?.

2. If the form is nondegenerate on V and on W , then it is nondegenerate on W ?.

Proof. 1. “(” : If V D W ˚W ?, thenW \W ? D f0g, hence the form is nondegenerate
by Proposition 2.19.

“)” : If the form is nondegenerate, then W \W ? D f0g again by Proposition 2.19.
Thus we are left to show every vector v 2 V can be written as v D w C u, where
w 2 W and u 2 W ?.

Let .w1; w2; : : : ; wk/ be a basis of W . Our objective is to extend this basis of W
to a basis w D .w1; w2; : : : ; wkI v1; : : : ; vn�k/ of V such that hwj ; viiF D 0 for
j D 1; : : : ; k and i D 1; : : : ; n � k.

The matrix of the form with respect to .V;w/ is

MF D

�
A B

C D

�
; (22)

where A is the matrix of the form restricted to W . Since the form is nondegenerate on
W , A is invertible. We are to find v1; : : : ; vn�k that make B D 0. We do this by first
using an arbitrary basis w D .w1; w2; : : : ; wkI v1; : : : ; vn�k/ of V and achieve B D 0
by changing basis.

Let the base change matrix be

P D

�
I Q

0 S

�
(23)

for some new basis w0 D .w1; w2; : : : ; wkI v01; : : : ; v0n�k/. Then the matrix of the form
M0

F
with respect to .V;w0/ is

M0
F D P

�MFP D

�
I 0

Q� S�

��
A B

C D

��
I Q

0 S

�

D

0@ A AQC BS

Q�AC S�C �

1A :
(24)

Set S D I and Q D �A�1B , the upper right block of M0
F

will become 0, as desired.
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2. Exercise.

Exercise 2.24. Prove that if both M D

�
A 0

C D

�
and its upper left block A are invertible,

then the block D is invertible. Then prove (2) of Theorem 2.23.

Example 2.25. Starting with an arbitrary basis w D .w1; w2; : : : ; wn/, the matrix of the
form is

MF D

0BBBBBB@
hw1; w1iF hw1; w2iF � � � hw1; wniF

hw2; w1iF hw2; w2iF � � � hw2; wniF
:::

:::
: : :

:::

hwn; w1iF hwn; w2iF � � � hwn; wniF

1CCCCCCA : (25)

Suppose �1 WD hw1; w1iF ¤ 0, so the form is nondegenerate on W D span w1. What
we want to do in the above theorem is to acheive

B D
�
hw1; w2iF � � � hw1; wniF

�
D
�
0 � � � 0

�
:

We do this by setting Q D � 1
�1

�
hw1; w2iF � � � hw1; wniF

�
and S D I . Then the

matrix of the form with respect to the new basis becomes

M0
F D

0BBBBBB@
hw1; w1iF 0 � � � 0

hw02; w1iF hw02; w
0
2iF � � � hw02; w

0
niF

:::
:::

: : :
:::

hw0n; w1iF hw0n; w
0
2iF � � � hw0n; w

0
niF

1CCCCCCA : (26)

Note that since we don’t require (Hermitian) symmetry in our definition of orthogonality,
there is no guarantee that the first column of M0

F
(except hw1; w1iF ) is also zero.

Definition 2.26. Let V be a vector space together with a bilinear form or a sesquilinear form
h�; �iF . An orthogonal basis w D .w1; w2; : : : ; wn/ of V is a basis such that hwi ; wj iF D 0
for all i ¤ j; i; j 2 f1; : : : ; ng.

Discussion 2.27. Orthogonality is symmetric by definition.

Theorem 2.28. Let h�; �iF be a bilinear form or a sesquilinear form on V . In addition, assume
the form is symmetric or Hermitian symmetric. Then there exists an orthogonal basis of V .

Proof. If the form is identically zero, then every basis is orthogonal. So assume it is not
identically zero. Then

Lemma 2.29. there is a vector v such that hv; viF ¤ 0.
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Exercise 2.30. Prove the above lemma.

Assume by induction that there exists an orthogonal basis of any proper subspace of V .
Apply the above lemma and choose a vector v1 2 V with hv1; v1iF ¤ 0 as the first vector in
our basis. LetW D span v1. The matrix of the form restricted toW is the 1�1matrix whose
entry is hv1; v1iF . It is invertible, so the form is nondegenerate on W . By Theorem 2.23,
V D W ˚W ?. By our induction hypothesis, W ? has an orthogonal basis .v2; : : : ; vn/.

There is no guarantee that .v1; v2; : : : ; vn/ is an orthogonal basis of V in the sense of
Definition 2.26 unless the form h�; �iF is (Hermitian) symmetric. Without this assumption,
the matrix of the form MF is at best lower triangular, but not diagonal, since we only know
hv1; v2iF D 0; hv1; v3iF D 0; : : : ; hv1; vniF D 0, but there is no guarantee that hv2; v1iF D
0; hv3; v1iF D 0; : : : ; hvn; v1iF D 0.

Definition 2.31. Let h�; �iF be a bilinear form or a Hermitian symmetric sesquilinear form
(so that hv; viF 2 R) on V . The form is said to be

� positive definite if hv; viF > 0 for any nonzero v 2 V ;

� positive semidefinite if hv; viF � 0 for any nonzero v 2 V ;

� negative definite if hv; viF < 0 for any nonzero v 2 V ;

� negative semidefinite if hv; viF � 0 for any nonzero v 2 V ;

� indefinite if it is neither positive nor negative semidefinite.

Remark. Let MF be the matrix of the form with respect to some basis w. The form is
positive definite if and only if x�MF x > 0 for all x ¤ 0. Similar inequalities hold for other
definitions above.

Theorem 2.32. Let V be a vector space over F , where F D R or C. There is a basis w of V
such that hwi ; wiiF D 1 for all i D 1; : : : ; n and hwi ; wj iF D 0 for all i ¤ j , if and only if
the form h�; �iF W V � V ! F is (Hermitian) symmetric and positive definite. Such a basis
w is called an orthonormal basis of V .

Discussion 2.33. With respect to .V;w/, the matrix of the form becomes the identity matrix
I , and thus for v1 D .x;w/ and v2 D .y;w/,

hv1; v2iF D x�Iy D x�y: (27)

That is, the form becomes dot product on .V;w/. A matrix M is (Hermitian) symmetric and
positive definite if and only if there is invertible matrix P such that P �MP D I . But P
is necessarily not unitary unless M itself is the identity matrix. Also, if M is the matrix of
some linear operator, then since I D P �MP is not the same as P �1MP , the identity matrix
I is not the same as the operator.

Proof of Theorem 2.32. Given an orthogonal basis w D .w1; w2; : : : ; wn/ of V , use positive
definiteness to adjust each positive real number hwi ; wiiF to 1.
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Example 2.34. Let a two dimensional real vector space .V;w/ be given. Suppose the matrix
of the form with respect to this basis is

MF D

0@hw1; w1iF hw1; w2iF

hw2; w1iF hw2; w2iF

1A D ��1 0

0 �2

�
; (28)

where �1; �2 2 R, �1; �2 > 0. The matrix is symmetric and positive definite, so we know
that it can be changed to the identity matrix. We set

P D

 
1
p
�1

0

0 1
p
�2

!
: (29)

Then

P tMFP D

 
1
p
�1

0

0 1
p
�2

!�p
�1 0

0
p
�2

�
D

�
1 0

0 1

�
: (30)

Exercise 2.35. Show that if we don’t assume the form to be positive definite in Theo-
rem 2.32, but merely (Hermitian) symmetric, then there is a basis w of V such that the
matrix of the form is at best

MF D

0@Ip �Iq
0

1A (31)

for some p; q, where Ip and Iq are respectively p � p and q � q identity matrices.

3 Application: Operators on Inner Product Space
Definition 3.1. A (Hermitian) symmetric and positive definite bilinear form or sesquilinear
form is called an inner product. We denote such form as h�; �iI .

Definition 3.2. Let .V;w/ be a vector space together with an inner product h�; �iI , where w is
an orthonormal basis. For T 2 L .V /, its adjoint T � 2 L .V / is the operator whose matrix
is the adjoint of the matrix of T . Thus MT � WDM�

T .

Let’s develop two useful properties of adjoint.

Proposition 3.3. With the definitions and notations above, hT v;wiI D hv; T �wiI and
hv; T wiI D hT

�v;wiI for all v;w 2 V .

Proof. Let v D .x;w/ and w D .y;w/. Then

hT v;wiI D .MT x/�y D x�M�
T y D hv; T �wiI ; (32)

and
hv; T wiI D x�MT y D x�.M�

T /
�y D .M�

T x/�y D hT �v;wiI : (33)
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Proposition 3.4. Let W be a subspace of V .

� If W is T -invariant, then W ? is T �-invariant;

� If W is T �-invariant, then W ? is T -invariant.

Proof.

hw; uiI D 0 8w 2 W;u 2 W ?I

hTw; uiI D 0 8w 2 W;u 2 W ? since W is T -invariantI

hw; T �uiI D 0 8w 2 W;u 2 W ? by Proposition 3.3:

Thus T �u 2 W ? 8u 2 W ? H) W ? is T �-invariant. Since .T �/� D T , substitute T � into
the first statement we get the second.

Definition 3.5. Let .V;w/ be a complex vector space with inner product h�; �iI , where w is
an orthonormal basis. Let T 2 L .V /.

� T is Hermitian (or self-adjoint) if T D T �;

� T is normal if T T � D T �T ;

� T is unitary if T �T D I .

Proposition 3.6. Let v;w 2 V be arbitrary. With the definitions as above,

� T is Hermitian if and only if hT v;wiI D hv; T wiI ;

� T is normal if and only if hT v; T wiI D hT �v; T �wiI ;

� T is unitary if and only if hT v; T wiI D hv;wiI .

Proof. 1. If T D T �, then hT v;wiI D hv; T wiI by Proposition 3.3. Conversely, if
hT v;wiI D hv; T wiI , then hv; T wiI D hv; T �wiI for all v;w 2 V , again by Propo-
sition 3.3. Since the form is nondegenerate (its matrix is the identity matrix, which is
invertible; see Proposition 2.22), Tw D T �w for all w 2 V by Corollary 2.21. Thus
T D T �.

2. � Substitute T �v for v into the first equation of Proposition 3.3, we have

hT T �v;wiI D hT
�v; T �wiI I

� Substitute T v for v into the second equation of Proposition 3.3, we have

hT v; T wiI D hT
�T v;wiI :

Then
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� T T � D T �T H) hT v; T wiI D hT
�v; T �wiI ;

� hT v; T wiI D hT
�v; T �wiI H) hT

�T v;wiI D hT T
�v;wiI H) T �T v D

T T �v by Corollary 2.21 H) T T � D T �T .

3. Substitute Tw for w into the first equation of Proposition 3.3 and proceed as above.

Discussion 3.7 (On definition of Adjoint). Our definition of adjoint of an operator is inde-
pendent up to orthonormal basis:

� Given .V;w/, T 2 L .V /, its matrix MT , T � is defined by MT � WD .MT /
�;

� Given .V;w0/, T 2 L .V /, its matrix M0
T , T � is defined by M0

T � WD .M
0
T /
�.

Since M0
T � D P

�1MT �P , where P is the base change matrix, the right sides of the two
equations above should also satisfy this relation, i.e.,

.M0
T /
�
D .P �1MTP /

�
D P �M�

T .P
�1/� D P �1M�

TP D .M
�
T /
0: (34)

This hold if and only if P � D P �1, i.e., P is unitary and thus w0 is again orthonormal
(see Proposition 3.6). Since we always use orthonormal basis when we are dealing with
inner product, our definition of adjoint is suffice.

Proposition 3.8. Let T be a normal operator. If T v D �v, then T �v D N�v.

Proof. Since T is normal, T ��I is also normal (Exercise 3.9). Then since .T ��I/v D 0,
we have

0 D h.T � �I/v; .T � �I/viI

D h.T � �I/�v; .T � �I/�viI

D h.T � � N�I/v; .T � � N�I/viI :

(35)

Since the form is positive definite, hv; viI D 0 implies that v D 0. This shows that T �v D
N�v.

Exercise 3.9. Verify that if T is normal, then T � �I is normal.

Theorem 3.10 (Spectral Theorem for Normal Operators). Let .V;w/ be a vector space
together with an inner product h�; �iI , where w is an orthonormal basis. If T 2 L .V / is a
normal operator with matrix MT , then

� there is a unitary matrix P such that P �MTP is diagonal; or equivalently,

� there is an orthonormal basis w0 such that all of w0 are at the same time eigenvectors
of T .
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Proof. We prove the second statement. Pick an eigenvector v of T with eigenvalue �, and
normalize its length to 1 (that is, make hv; viI D 1. Note that T v D �v still hold). Then
T v D �v and T �v D N�v by Proposition 3.8. Let W WD span v. Then V D W ˚ W ?

by Theorem 2.23 since the form is nondegenerate on W .hv; viI D 1 ¤ 0/. Since W is T �-
invariant, W ? is T -invariant by Proposition 3.4. Thus T is normal on W ?. Then we may
assume by induction that W ? has an orthonormal basis of eigenvectors, say .v2; : : : ; vn/.
Then .v; v2; : : : ; vn/ is an orthonormal basis of eigenvectors of T .

Discussion 3.11. The above spectral theorem for normal operators applies in particular to
Hermitian operators and unitary operators, since they are both normal. Thus we see that
for a matrix MT of a Hermitian operator, there is a unitary matrix P such that P �MTP is
diagonal. See Discussion 2.33 for the case of forms.

4 Application: Square Root, Polar Decomposition and SVD
Proposition 4.1. Let .V;w/ be a complex vector space together with an inner product h�; �iI ,
where w is an orthonormal basis as usual. Given T 2 L .V /,

hv;wiT WD hv; T wiI (36)

defines a new sesquilinear form on V . T 2 L .V / is Hermitian if and only if the form h�; �iT
is Hermitian symmetric.

Exercise 4.2. Prove the above Proposition.

Exercise 4.3. Prove that with respect to the new form h�; �iT , V ? D null T . Thus the form
is nondegenerate if and only if T is invertible.

Corollary 4.4. Every eigenvalue of a Hermitian operator is real.

Proof. By Proposition 4.1 and Corollary 2.14, hv; viT 2 R for any v 2 V . Thus if T v D �v,
then

hv; viT D hv; T viI D hv; �viI D �hv; viI 2 R) � 2 R: (37)

Definition 4.5. An operator R 2 L .V / is called a square root of an operator T 2 L .V / if
R2 D T .

Definition 4.6. An operator T 2 L .V / is called positive if the form h�; �iT is Hermitian
symmetric and positive semidefinite.

Theorem 4.7. Every positive operator T 2 L .V / has a unique positive square root.
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Proof. First observe that if hv; viT � 0 for all v 2 V (i.e., the form is positive semidefinite),
then all eigenvalues of T are nonnegative (see the proof of Corollary 4.4). Also, with respect
to some orthonormal basis w, the matrix of T is a diagonal matrix MT consisting of these
nonnegative eigenvalues:

MT D

0BBB@
�1

�2
: : :

�n

1CCCA : (38)

Thus we can take square roots along the diagonal and obtain a matrix MR:

MR D

0BBB@
p
�1 p

�2
: : :
p
�n

1CCCA : (39)

The operator R 2 L .V / is defined by Rwj D
p
�jwj for j D 1; : : : ; n. Thus one

can see M2
R D MT and R2 D T . Hermitian symmetry and positive semidefiniteness are

obvious.
Uniqueness is just the fact that every nonnegative number has a unique (nonnegative)

square root. To prove it formally, suppose there is another positive operator R0 2 L .V /

such that R02 D T . It has an orthonormal basis v, and suppose R0vj D j̨vj for some vj
in v and j̨ � 0. Then T vj D R02vj D ˛2j vj so that vj is also an eigenvector of T . By
our construction it is also an eigenvector of R, so Rvj D ǰvj for some ǰ � 0. Then
T vj D R2vj D ˇ2j vj , and therefore ˛2j D ˇ2j . Since both j̨ and ǰ are nonnegative, this
implies that j̨ D ǰ . The same situation is true for all basis elements in v, so R D R0 as
desired.

Theorem 4.8 (Polar Decomposition). Every operator T 2 L .V / can be written as T D
UR where U 2 L .V / is unitary and R2 D T �T .

Remark. Since T �T is a positive operator, as can be easily checked, R is uniquely deter-
mined by Theorem 4.7. In the proof below, we shall define U separately on each component
of V D R.V /˚ ŒR.V /�?.

Proof. For v 2 V ,

hRv;RviI D hR
2v; viI D hT

�T v; viI D hT v; T viI : (40)

Thus if we define U 0 W R.V /! T .V / by

U 0.Rv/ D T v; (41)

13



then by Eq. (40), hU 0.Rv/; U 0.Rw/iI D hT v; T wiI D hRv;RwiI , so U 0 is indeed unitary
on R.V /. We use definiteness of h�; �iI to show U 0 is well defined. If Rv1 D Rv2, then we
want their images T v1 and T v2 to be equal. This is

T v1 � T v2 D 0:

Using definiteness of h�; �iI , it suffices to show

hT v1 � T v2; T v1 � T v2iI D 0;

which is
hT .v1 � v2/; T .v1 � v2/iI D 0:

According to Eq. (40), the above expression is equal to

hR.v1 � v2/; R.v1 � v2/iI

D hRv1 �Rv2; Rv1 �Rv2iI

D 0:

Thus U 0 is indeed well defined.

Exercise 4.9. Check that U 0 is indeed linear.

Reverse the above verifications that used to show U 0 was well defined, we see that
U 0 is injective. Thus dim null.U / D 0 and therefore dimR.V / D dimT .V /. Then
dimŒR.V /�? D dimŒT .V /�? and we can choose orthonormal basis u D .u1; : : : ; um/

of ŒR.V /�? and v D .v1; : : : ; vm/ of ŒT .V /�?. Define U 00 W ŒR.V /�? ! ŒT .V /�? by
.x;u/ 7! .x; v/. If z1 D .x1;u/ and z2 D .x2;u/, then

hU 00z1; U
00z2iI D h.x1; v/; .x2; v/iI D x�1x2 D h.x1;u/; .x2;u/iI D hz1; z2iI : (42)

Write each element v 2 V D R.V / ˚ ŒR.V /�? as v D w C u where w 2 R.V / and
u 2 ŒR.V /�?. Define U 2 L .V / by

Uv D U 0w C U 00u: (43)

Then for all v 2 V , URv D U 0.Rv/ D T v, so T D UR as desired. We are left to check that
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U is indeed unitary. Given v1; v2 2 V , where v1 D w1 C u1 and v2 D w2 C u2, we have

hUv1; Uv2iI

D hU.w1 C u1/; U.w2 C u2/iI

D hU 0w1 C U
00u1; U

0w2 C U
00u2iI

D hU 0w1; U
0w2iI C hU

00u1; U
00u2iI

D hw1; w2iI C hu1; u2iI

D hw1 C u1; w2 C u2iI

D hv1; v2iI :

(44)

Definition 4.10. For T 2 L .V /; T D UR, the eigenvalues of R are called the singular
values of T .

Theorem 4.11 (Singular Value Decomposition, SVD). For every T 2 L .V /, there are
two orthonormal basis w D .w1; : : : ; wn/ and v D .v1; : : : ; vn/ such that

Twj D sjvj (45)

for each j D 1; : : : ; n, where s1; : : : ; sn are singular values of T .

Proof. There is an orthonormal basis w D .w1; : : : ; wn/ of V such that Rwj D sjwj for
j D 1; : : : ; n. Then Twj D URwj D sjUwj . Since U is unitary, it preserves orthonormal
basis, thus .v1; : : : ; vn/ WD .Uw1; : : : ; Uwn/ is again an orthonormal basis.

5 Application: Quadratic Forms and Optimization
Definition 5.1. A quadratic form QA W Rn ! R is a homogeneous polynomial of degree 2,
i.e.,

QA.x1; x2; : : : ; xn/ D
X
i�j

aijxixj (46)

for some aij 2 R, i; j D 1; : : : ; n.

Proposition 5.2. Every quadratic form QA W Rn ! R can be represented by QA.x/ D xtAx
for some real symmetric n � n matrix. Conversely, for every real symmetric matrix A we
can associate a quadratic form QA.x/ D xtAx.

Proof. The last statement is obvious. For the first statement we look at two dimensional
case. Given a quadratic form QA.x/ D QA.x1; x2/ D ax21 C bx1x2 C cx22 ,

QA.x1; x2/ D
�
x1 x2

� � a b=2

b=2 c

��
x1
x2

�
D xtAx: (47)
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Corollary 5.3. Let h�; �iI be dot product on Rn. Then

QA.x/ D xtAx D hx; AxiI D hx; xiA: (48)

Definition 5.4. A quadratic form QA W Rn ! R is said to be

� positive definite if QA.x/ > 0 for any x ¤ 0; x 2 Rn;

� positive semidefinite if QA.x/ � 0 for any x ¤ 0; x 2 Rn;

� negative definite if QA.x/ < 0 for any x ¤ 0; x 2 Rn;

� negative semidefinite if QA.x/ � 0 for any x ¤ 0; x 2 Rn;

� indefinite if it is neither positive nor negative semidefinite.

We say a real symmetric matrix A has the above property if its associated quadratic form
(Proposition 5.2) is so.

In view of Corollary 5.3, definiteness for quadratic forms, matrices and bilinear forms
are really the same thing.

We see from Definition 5.4 that if QA is positive definite, then x D 0 minimizes QA.x/
on Rn; it is called a global minimizer ofQA. Similarly, ifQA is negative definite, then x D 0
maximizes QA.x/ on Rn; it is called a global maximizer of QA. Quadratic forms give us an
opportunity to visualize definiteness (Fig. 1).

Exercise 5.5. Work out the 5 symmetric matrices of the conrresponding quadratic forms in
Fig. 1.

Definition 5.6. Let f W A! R be twice continuously differentiable onA � Rn. It’s Hessian
matrix at a 2 A is

Hf .a/ D

0BBBBBB@
D11f .a/ D12f .a/ � � � D1nf .a/

D21f .a/ D22f .a/ � � � D2nf .a/
:::

:::
: : :

:::

Dn1f .a/ Dn2f .a/ � � � Dnnf .a/

1CCCCCCA : (49)

Theorem 5.7 (Second Partial Derivative Test). Let f W Rn ! R be smooth. Suppose
a 2 Rn is a critical point of f .

� If Hf .a/ is positive definite, then a is a local minimum of f ;

� If Hf .a/ is negative definite, then a is a local maximum of f .
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z

Q.x1; x2/ D x
2
1 C x

2
2 is positive definite

z

Q.x1; x2/ D .x1 C x2/
2 is positive semidefinite

z

Q.x1; x2/ D �.x
2
1 C x

2
2/ is negative definite

z

Q.x1; x2/ D �.x1 C x2/
2 is negative semidefinite

z

Q.x1; x2/ D x
2
1 � x

2
2 is indefinite

Figure 1: Quadratic forms

17



Sketch of Proof. Taylor’s Theorem says that:

f .x/ D f .a/C
nX
iD1

.xi � ai/
@f

@xi

ˇ̌̌̌
a
C
1

2

nX
i;jD1

.xi � ai/.xj � aj /
@2f

@xi@xj

ˇ̌̌̌
a
C � � �

D f .a/C hx � a;rf .a/iI C
1

2
hHf .a/.x � a/; x � aiI C � � �

(50)

Since a is a critical point of f , rf .a/ D 0, so that

f .x/ � f .a/ D
1

2
hHf .a/.x � a/; x � aiI C � � � (51)

If say, Hf .a/ is positive definite, then hHf .a/.x � a/; x � aiI > 0 for x ¤ a, so that
f .x/ � f .a/ for x sufficient close to a.

We now give a criterion for a real symmetric matrix (hence for a symmetric bilinear
form and in particular quadratic form) to be positive or negative definite. Let A be a real
symmetric n � n matrix.We let Ak denote the upper left k � k block of A. Thus if we let

A D

0BBB@
a11 a12 � � � a1n
a21 a22 � � � a2n
:::

:::
: : :

:::

an1 an2 � � � ann

1CCCA ; (52)

Then A1 D
�
a11
�
, A2 D

�
a11 a12
a21 a22

�
, etc.

Theorem 5.8. Let A be a real n � n symmetric matrix. Then

� A is positive definite if and only if detAk > 0 for all k D 1; : : : ; n;

� A is negative definite if and only if detAk alternating signs as detA1 < 0; detA2 >
0; detA3 < 0; : : :

We first prove two lemmas.

Lemma 5.9. If A is positive or negative definite, then A is nonsingular.

Proof. If A is singular, then there is x ¤ 0 such that Ax D 0. But then xtAx D 0, contra-
dicting to the definiteness of A.

Lemma 5.10. If A is real symmetric andQ is nonsingular, thenQtAQ is symmetric, and A
is positive (negative) definite if and only if QtAQ is positive (negative) definite.

Proof. 1. At D A H) .QtAQ/t D QtAtQ D QtAQ.
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2. “)”: Since Qz ¤ 0 for any z ¤ 0, we have

0 < .Qz/tA.Qz/ D zt.QtAQ/z: (53)

Thus QtAQ is positive definite.

“(”: Since Q is nonsingular, for every x ¤ 0 there is y ¤ 0 such that x D Qy. Then

xtAx D .Qy/tA.Qy/ D yt.QtAQ/y > 0: (54)

This shows that A is positive definite.

Proof of Theorem 5.8. We prove the first statement. The proof of the second statement is
similar and is left as exercise.

Partition A as

A D

0@ An�1 a

at an

1A ; (55)

where

a D

0BBB@
a1n
a2n
:::

a.n�1/n

1CCCA :
Decompose A as

A D

0@ In�1 0

.A�1n�1a/t 1

1A0@ An�1 0

0 d

1A0@ In�1 A�1n�1a

0 1

1A
D QtBQ:

(56)

Exercise 5.11. Work out the expression for d .

We see that detQ D detQt D 1, and detB D d � detAn�1. Therefore

detA D det.QtBQ/ D .detQt/.detB/.detQ/ D d � detAn�1: (57)

“(”: This is obviously true for n D 1. Suppose by induction that it is also true for any
.n � 1/ � .n � 1/ symmetric matrix. Since detAn�1 > 0 and detA > 0, we have d > 0 in
Eq. (57).
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Let x 2 Rn; x ¤ 0. Single out the last element of x as

x D

0@xn�1

xn

1A ;
where xn�1 is an .n � 1/-vector. Then

xtBx D
�

xn�1 xn

�0@ An�1 0

0 d

1A0@xn�1

xn

1A
D xtn�1An�1xn�1 C dx

2
n:

(58)

Since An�1 is positive definite by induction hypothesis and d > 0, the last expression is
strictly positive. Therefore B is positive definite. By Lemma 5.10, A is positive definite, as
desired.

“)”: Suppose A is positive definite. Then all Ak; k D 1; : : : ; n are positive definite:

just take x D

0@xk

0

1A. Thus we can suppose by induction that all of Ak; k D 1; : : : ; n � 1

have positive determinant. We need only to show A also has positive determinant, which

according to Eq. (57) reduced to show d > 0. Let x D

0@0

1

1A. Then

xtBx D d > 0 (59)

since B is positive definite by Lemma 5.10.

Exercise 5.12. Prove the second statement of Theorem 5.8. (Hint: The proof is almost the
same as in the case of positive definiteness. Go through the proof again and see where should
be modified.)
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