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1 Causality

1.1 Potential Outcome Framework (POF)

� Population

� Observables: for each unit i , observe the realized value of the following variables: a treat-
ment, denoted by D (e.g. D 2 f0; 1g, and an outcome, denoted by Y .

� Potential outcomes: The hypothetical outcome unit i would experience were they given
feasible treatment value QD is denoted by Yi. QD/. Yi.1/ or Y1i is i ’s potential outcome under
treatment. Yi.0/ or Y0i is i ’s potential outcome under no treatment.

� Individual-level causal effect: �i D Yi.1/�Yi.0/. It is logically impossible to observe the
individual-level effect (Fundamental Problem of Causal Inference (FPCI) [Hol86]

� Average Treatment Effect (ATE): expectation of individual-level causal effect over the
entire population.

ıATE D EŒ�i � D EŒYi.1/ � Yi.0/� D EŒYi.1/� �EŒYi.0/�:

For D 2 f0; 1g, this is

EŒYi.1/jDi D 1� � P.Di D 1/CEŒYi.1/jDi D 0� � P.Di D 0/

�
�
EŒYi.0/jDi D 0� � P.Di D 0/CEŒYi.0/jDi D 1� � P.Di D 1/

�
;

where we have used the law of iterated expectations:

EŒY � D
X
XDx

EŒY jX D x� � P.X D x/:

This is the way we calculate ıATE , since we usually have the following kind of data:

Group Sample Size Mean Health Status Std. Error

Hospital 7,774 3.21 0.014
No Hospital 90,049 3.93 0.003

In this case, EŒYi.1/jDi D 1� D 3:21, P.Di D 1/ D 7; 774=97; 823, and EŒYi.0/jDi D

0� D 3:93, P.Di D 1/ D 90; 049=97; 823. We don’t know the other two expectations,
EŒYi.1/jDi D 0� and EŒYi.0/jDi D 1�, so the naive difference .3:21 � 3:93/ is not the
ıATE that we’d like to know, unless

EŒYi.1/jDi D 1� D EŒYi.1/jDi D 0� and EŒYi.0/jDi D 0� D EŒYi.0/jDi D 1�:
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� Average Treatment effect on the Treated (ATT) and on the Untreated (ATU):

ıAT T D EŒ�i jDi D 1� D EŒYi.1/jDi D 1� �EŒYi.0/jDi D 1�

ıATU D EŒ�i jDi D 0� D EŒYi.1/jDi D 0� �EŒYi.0/jDi D 0�

The Naive Estimator (NE) can be decomposed as:

NE D EŒYi.1/jDi D 1� �EŒYi.0/jDi D 0�

D EŒYi.1/jDi D 1� �EŒYi.0/jDi D 1�CEŒYi.0/jDi D 1� �EŒYi.0/jDi D 0�

D ıAT T CEŒYi.0/jDi D 1� �EŒYi.0/jDi D 0�

D ıAT T C selection bias:

1.2 Randomization

� Randomly divide the population into two groups, T and C . Group T receives treatment
(Di D 1), and group C receives no treatment (Di D 0).

� C and T differ only in the treatment, but no other things. In particular, EŒYi.0/� is the same
for both C and T , and EŒYi.1/� is the same for both C and T .

� Symbolically,
EŒYi.0/ji 2 C � D EŒYi.0/ji 2 T � D EŒYi.0/�;

EŒYi.1/ji 2 T � D EŒYi.1/ji 2 C � D EŒYi.1/�:

� This implies that

ıATE � EŒYi.1/� �EŒYi.0/� D EŒYi.1/ji 2 T � �EŒYi.0/ji 2 C �

D EŒYi.1/jDi D 1� �EŒYi.0/jDi D 0�

D NE:

� Similarly, we have ıAT T D ıATE .
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2 Linear Regressions

2.1 Data Structures

1. Cross-sectional data

2. Time series data

3. Pooled cross sections:

� Samples in two or more time period. The samples in each time period are not related.

� Often used to evaluate policy changes (e.g. by means of Differences-in-Differences).
Example: evaluate effect of change in property taxes on house prices. Compare random
sample of 250 house prices in 1993 and random sample of 270 house prices in 1995.

4. Panel data:

� Follow the same unit in multiple time periods (Same cross-sectional units followed
over time)

� Panel data can be used to account for time-invariant unobservables (e.g. by means
of Fixed Effects), aiding causal inference. Panel data can also be used to model lagged
responses.

2.2 Conditional Expectation Function (CEF)

Definition: EŒyi jXi �. When y is continuous, it is
R
t � fy.t jXi D x/dt .

Properties of CEF:

� Law of Iterated Expectations (LIE):

EŒyi � D EfEŒyi jXi �g:

Example: Wage-schooling: gender is discrete X , then the average earnings in a population
of men and women is the average for men times the population proportion of men plus
the average for women times the population proportion of women. E.y/ D E.yi jXi D

male/ � p1 CE.yi jXi D female/ � p2, where p1 C p2 D 1.

� CEF Decomposition Property: from LIE, we can write

yi D EŒyi jXi �C "i ;

where "i is mean independent of Xi , i.e. EŒ"i jXi � D 0. In words, any random variable
yi can be decomposed into a piece that is explained by Xi and a piece left over which is
uncorrelated with any function of Xi .
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� CEF Prediction Property: The CEF solves:

argmin
m

E
˚
Œyi �m.Xi/�

2
	
;

so it is the mean squared error (MMSE) predictor of yi given Xi . In words, CEF is the best
predictor of yi given Xi under square loss.

� CEF ANOVA Theorem:

V.yi/ D V fEŒyi jXi �g CEfV Œyi jXi �g:

2.3 Population Linear Regression Model

Population Linear Regression Model:

yi D X
0
iˇ C "i ;

where yi and "i are 1 � 1, Xi and ˇ are K � 1, and the model holds for every i in the population.
ˇ can be defined by minimizing mean squared error (MMSE):

ˇ D argmin
b

EŒ.yi �X
0
ib/

2�:

First order condition:
EŒXi.yi �X

0
ib/� D 0

Solution:
ˇ D EŒXiX

0
i �
�1EŒXiyi �:

Note that the expectation is taken over all i ’s.
Let’s verify the formula for simple linear regression with a constant. In this case y D ˇ0 C

ˇ1x C �, so X D

 
1

x

!
and ˇ D

 
ˇ0

ˇ1

!
. We omit the subscript i . We have

XX 0 D

 
1

x

!�
1 x

�
D

 
1 x

x x2

!
;

so that

EŒXX 0� D

 
1 EŒx�

EŒx� EŒx2�

!
H) EŒXX 0��1 D

1

EŒx2� �EŒx�2

 
EŒx2� �EŒx�

�EŒx� 1

!

D
1

V.x/

 
EŒx2� �EŒx�

�EŒx� 1

!
:
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Xy D

 
1

x

!
� y D

 
y

xy

!
. Thus we have

ˇ D
1

V.x/

 
EŒx2� �EŒx�

�EŒx� 1

! 
EŒy�

EŒxy�

!
D

1

V.x/

 
EŒx2� �EŒy� �EŒx� �EŒxy�

�EŒx� �EŒy�CEŒxy�

!
:

So we indeed have ˇ1 D .EŒxy� �EŒx� �EŒy�/=V .x/ D Cov.y; x/=V .x/.

We can actually derive ˇ0 and ˇ1 in a simple way. The first order conditions are8<:�2EŒy � ˇ0 � ˇ1x� D 0�2EŒx.y � ˇ0 � ˇ1x/� D 0

From the first we get ˇ0 D EŒy��ˇ1EŒx�. Substitute ˇ0 into the second we get ˇ1 D Cov.y; x/=V .x/.

An even more straightforward way is this: Since Cov.x; �/ D 0, we have

Cov.y; x/ D Cov.ˇ0Cˇ1xC�; x/ D ˇ1Cov.x; x/CCov.�; x/ D ˇ1Cov.x; x/ H) ˇ1 D Cov.y; x/=V .x/:

In the multivariate case, we have ˇk D Cov.y; Qxk/=V . Qxk/, where Qxk is the residual from a
regression of xk on all other covariates. In words, each slope coefficient in a multivariate regression
is the bivariate slope coefficient for the corresponding regressor after partialing out all the other
covariates (Frisch-Waugh Theorem).

This implies that the coefficient of any regressor, say x1, in a multiple regression model can be
obtained in two steps:

1. Regress x1 on all other regressors x2; x3; x4, etc.

2. Simple linear regression: regress y on the residual from the first regression.

This works because:

1. The residuals from the first regression is the part of x1 that is uncorrelated with x2; x3; x4
etc.

2. The slope coefficient of the second regression is the isolated effect of x1 on y, after the effect
of x2; x3; x4 etc. on x1 has been partialed or netted out.
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2.4 Linking Mean Linear Regression and CEF

1. Regression Justification I: Linear CEF Theorem

Theorem 2.1. Suppose the CEF is linear, that is EŒyi jXi � D m.Xi/ D X 0ib for some
parameters vector b. Then the population regression function (PRF), X 0iˇ, is the CEF:
EŒyi jXi � D X

0
iˇ.

2. Regression Justification II: Best Linear Predictor Theorem

Theorem 2.2 (BLP Theorem). The function X 0iˇ is the best linear predictor of yi given Xi
in a MMSE sense.

3. Regression Justification III: Regression CEF Theorem

Theorem 2.3. The PRF,X 0iˇ, provides the MMSE linear approximation to the CEF,EŒyi jXi �:

ˇ D argmin
b

E
˚
.EŒyi jXi � �X

0
ib/

2
	

The last theorem implies that regression coefficients can be obtained using EŒyi jXi � as a de-
pendent variable instead of yi . This is weighted regression:

ˇ D argmin
b

E
˚
.EŒyi jXi � �X

0
ib/

2
	

D argmin
b

X
v

.EŒyi jXi D v� � v
0b/2fX.v/:

2.5 Regression Specifications

� Level-Level Benchmark

wage D ˇ0 C ˇ1educC � � � C ":

Two characteristics:

– Homogeneity: Does not allow for differential returns to education across different
groups, i.e. ˇ1 is the same for everybody.

– Constant partial effect: the effect of an additional year of education, ˇ1, is constant
across levels of education.

� Log-Level Specification

log.wage/ D ˇ0 C ˇ1educC � � � C ":
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In this case,

ˇ1 D
� log.wage/
�educ

�
�wage=wage
�educ

:

ˇ1 has a constant percentage interpretation: wage is increased by 100ˇ1 percent if educa-
tion is increased by one year. This allows for increasing returns to education.

� Log-Log Specification

log.salary/ D ˇ0 C ˇ1 log.sales/C � � � C ":

ˇ1 has an elasticity interpretation:

ˇ1 D
� log.salary/
� log.sales/

�
�salary=salary
�sales=sales

;

or the precentage change of wage if sales increase by one percent.

� Non-Constant Marginal Effect
Consider the following model relating family consumption and income:

cons D ˇ0 C ˇ1incC ˇ2inc2 C � � � C ":

The marginal effect of income on consumption is ˇ1 C 2ˇ2inc. We expect ˇ0 > 0 and
ˇ1 < 0, so that an increase in income should increase consumption at a decreasing rate.

� Dummy Variables
Consider the following model relating wage with gender and education:

wage D ˇ0 C ı0femaleC ˇ1educC � � � C ":

In this case, ı0 is the difference in mean wage between men and women with the same level
of education:

ı0 D Œˇ0 C ı0 C ˇ1educ� � Œˇ0 C ˇ1educ�

D EŒwagejfemale D 1; educ� �EŒwagejfemale D 0; educ�:

Note that ı0 is an intercept shift. The model does not allow the wage difference between the
two groups to depend on education.

� Dummy Variables With Interaction Effects
Consider the following model:

wage D ˇ0 C ı0femaleC ˇ1educC ı1female � educC � � � C "

D .ˇ0 C ı0female/C .ˇ1 C ı1female/ � educC � � � C ":

The four parameters have the following interpretation:

1. ˇ0 is the intercept for men.

2. ˇ1 is the slope for men.

3. ˇ0 C ı0 is the intercept for women.

4. ˇ1 C ı1 is the slope for women.
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2.6 Sample Estimation

Recall that Xi is K � 1. We let X denote the data matrix whose row is X 0i . The problem now is to
minimize SSR across sample units:

min
ˇ

NX
iD1

.yi �X
0
iˇ/

2 i.e. min
ˇ
ky �Xˇk2:

The solution is

ǑOLS D

"
NX
iD1

XiX
0
i

#�1 "
NX
iD1

Xiyi

#
D .X 0X/�1.X 0y/:

The k-th element can be obtained from the Frisch-Waugh Theorem as

ǑOLS
k D

PN
iD1 yi OrkiPN
iD1 Or

2
ki

;

where Orki D xki � .
P
j¤k Ǫjxj i/.

Some properties:

1. From the first order condition of the intercept ˇ0, we have

NX
iD1

O"i D 0;

where O"i D yi � Oyi D yi � . Ǒ0 C Ǒ1x1i C � � � C ǑKxKi/.

2. From the first order condition on all ˇ’s, we have X 0.y �Xˇ/ D 0, i.e.

NX
iD1

xki O"i D 0 for k D 1; 2; : : : ; K

(The first one is a special case of this one, where x1i D 1 for all unit i )

3. Sample averages of y and x lie on th regression line:

Ny D Ǒ0 C Ǒ1 Nx1 C � � � C ǑK NxK :

This is derived by dividing the equation in the first property by N .

A common measure of goodness-of-fit is R squared. For each unit i , the difference between
predicted value Oyi and the data yi is the error "i D yi � Oyi . The SSR is

PN
iD1 "

2
i . This could be

a measure of how well the model fits the data (the smaller the better), but if we want to compare
between different models, we need to standardize it. To do so, we use Ny as a benchmark. If
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"2i D .yi � Oyi/
2 > .yi � Ny/

2, then the prediction Oyi is worse than using the average Ny instead, so
we expect .yi � Oyi/2 � .yi � Ny/2. Thus we can use

R2 D 1 �
.y1 � Oy1/

2 C � � � C .yN � OyN /
2

.y1 � Ny/2 C � � � C .yN � Ny/2
D 1 �

PN
iD1 "

2
iPN

iD1.yi � Ny/
2

as a measure of goodness-to-fit.

2.7 Sample Estimation: Gauss-Markov Theorem

Assumptions:

� (A1) Linear in parameters.

� (A2) Random sampling.

� (A3) No perfect collinearity: none of the variables is constant, and there are no exact linear
relationships among the variables. In other words, the data matrix X should be full rank
(rank.X/ D K). This insures that X 0X is invertible, so the formula for ˇ would work.
Multicollinearity (as long as it is not "perfect") can be present resulting in a less efficient, but
still unbiased estimate. The estimates will be less precise and highly sensitive to particular
sets of data.

Recall X is N �K and X 0X is K �K. We give a proof that rank.X/ D rank.X 0X/. First,
from the fundamental theorem of linear algebra

K D dim nullX C dim rangeX D dim nullX C rank.X/

and
K D dim nullX 0X C dim rangeX 0X D dim nullX 0X C rank.X 0X/:

We prove nullX D nullX 0X . If v 2 nullX , so that Xv D 0, then certainly X 0Xv D 0, so
that v 2 nullX 0X . On the other hand, if X 0Xv D 0, then

0 D vTX 0Xv

D kXvk2

so that Xv D 0. The proof is complete.

� (A4) Zero conditional mean: E."i jXi/ D 0.
Note that mean independence implies zero covariance, but not the other way around:

EŒX jY � D EŒX�) EŒXY � D EŒX�EŒY �
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(e.g. Cov.X; Y / D EŒXY � � EŒX�EŒY � D 0). This can be proved by the law of iterated
expectation:

EŒXY � D EŒEŒXY jY �� D EŒEŒX jY � � Y � D EŒEŒX� � Y � D EŒX� �EŒY �;

where we used LIE in the first equality; the second equality holds because EŒX � yjY D
y� D EŒX jY D y� � y for every y.

� (A5) Homoskedasticity: V."i jXi/ D �2.

Theorem 2.4 (Unbiasedness of OLS estimator). Under assumptions (A1) – (A4), the OLS
estimator is unbiased:

E. ǑOLSk / D ˇk for k D 0; 1; : : : ; K:

Under assumptions (A1) – (A5), the OLS estimator is the best linear unbiased estimator
(BLUE):

V. ǑOLSk / � V. Q̌k/ for k D 0; 1; : : : ; K

for all Q̌k D
PN
iD1wki � yi for which E. Q̌k/ D ˇk.

The variance of OLS estimator under (A1)–(A5) is

V. ǑOLSk / D

8̂̂̂<̂
ˆ̂:

�2PN
iD1.xi� Nx/2

(bivariate case)

�2

SSTk.1�R
2
k
/

k D 1; : : : ; K (multivariate case)

where �2 D V."i jXi/, SSTk D
PN
iD1.xik � Nxk/

2, and R2
k

is the R2 of a mean linear regression
of xk on all other variables in X .

Several points:

� We want R2
k

to be small, i.e. there is little correlation between independent variables, so that
the variance of ǑOLS

k
could be small.

� We can see that increase N will increase SSTk, which decreases V. ǑOLS
k

/, so large N
improves precision.

To estimate the variance, we estimate �2 as O�2 D .
PN
iD1 "

2
i /=.N �K � 1/. It can be shown that

under (A1)–(A5) it is unbiased: E. O�2/ D �2. The standard errors for regression coefficients are
thus

SE. ǑOLSk / D

q
OV . ǑOLS

k
/ D

8̂̂̂<̂
ˆ̂:
q

O�2PN
iD1.xi� Nx/2

k D 1

q
O�2

SSTk.1�R
2
k
/

k D 1; : : : ; K

We now talk about asymptotic OLS inference.

11



Theorem 2.5. For reference, we list several results below.

� Consistency of OLS estimator: Under (A1) – (A4), the OLS estimator is consistent:

ǑOLS
k

p
�! ˇk for k D 0; 1; : : : ; K

as N ! 1. In fact, for consistency, (A4) can be replaced by weaker condition (A4’):
E."/ D 0 and E.xk"/ D Cov.xk; "/ D 0 for k D 1; : : : ; K.

� Asymptotic normality of OLS estimator: Under (A1) – (A5),

Ǒ
k � ˇk

SE. Ǒk/
 N.0; 1/

as N !1.

� Asymptotic efficiency of OLS estimator: Under (A1) – (A5), the OLS estimator has the
smallest asymptotic variances:

AVar
p
N. ǑOLSk � ˇk/ � AVar

p
N. Q̌k � ˇk/ for k D 0; : : : ; K;

where Q̌k solves equations of the form

NX
iD1

gk.Xi/.yi � Q̌0 � Q̌1xi1 � � � � � Q̌kxiK/;

where gk.Xi/ is any function of all regressors for observation i . ǑOLS
k

obtains for
g0.Xi/ D 1 and gk.Xi/ D xik.

Several points:

� Consistency is a minimal requirement for sensible estimators. If biased, then better be at
least consistent.

� Failure of (A5) implies that the earlier variance formulas for OLS estimators are no longer
valid, affecting efficiency of OLS as well as testing. It can be addressed using robust standard
errors developed by [Whi80]:q

OV . ǑOLS
k

/ D

sPN
iD1 Orik � O"

2
i

SSR2
k

:

Using robust standard error formulas, the usual t statistic is valid asymptotically. The F
statistic does not work under heteroskedasticity. Robust versions are available in most soft-
wares.
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3 Statistical Inference

3.1 Testing a single parameter – t test

Assumption (A6): "i � N.0; �2/ independent of X . A(6) implies (A4) and (A5). (A6) can be
replaced by "large N ".

Under assumption (A1) – (A6):

1.

Ǒ
k � N.ˇk; V . Ǒk//; or equivalently

Ǒ
k � ˇk

SD. Ǒk/
� N.0; 1/

where SD. Ǒk/ D
q
V. Ǒk/.

2.

tk D
Ǒ
k � ˇk

SE. Ǒk/
� tN�K�1:

Significance level ˛ and critical value c (Right-sided):

P.tk > c/ D

Z 1
c

ftk.x/dx D ˛:

Rejection rule: reject H0 W ˇk D 0 if Ǒk is too large, i.e. tk > c.
Significance level ˛ and critical value c (Two-sided):

P.jtkj > c/ D

Z �c
�1

ftk.x/dx C

Z 1
c

ftk.x/dx D ˛

A regressor is said to be "statistically significant" if its regression coefficient is different from zero
in a two-sided test. Rule of thumb:

� jtkj > 1:64 �! "statistically significant at 10% level"

� jtkj > 1:96 �! "statistically significant at 5% level"

� jtkj > 2:58 �! "statistically significant at 1% level"

p-values:

� p-value in a right-sided test:

p D

Z 1
tk

ftk.x/dx

� p-value in a two-sided test:

p D

Z �jtk j
�1

ftk.x/dx C

Z 1
jtk j

ftk.x/dx

The p-value is the smallest significance level at whichH0 is rejected. If p-value is very small, e.g.
close to 0, then the coefficient is very significant.
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3.2 Testing multiple parameters – F test

Example 3.1. Motivating example:

� Unrestricted model:

cumgpa D .ˇ0Cı0female/C.ˇ1Cı1female/�satC.ˇ2Cı2female/�hspercC.ˇ3Cı3female/�tothrsCerror

� Restricted model:

cumgpa D ˇ0 C ˇ1 � satC ˇ2 � hspercC ˇ3 � tothrsC error

� Hypothesis: H0 W ı0 D ı1 D ı2 D ı3 D 0.

� When moving from the unrestricted to the restricted model, the SSR tends to increase. If
the increase is large enough, then we may conclude that the ık’s are indeed relevant.

� The F -statistic is:
F D

.SSRR � SSRU /=q

SSRU=.N �K � 1/
� Fq;N�K�1

where q is the number of restrictions in the restricted model, and .K C 1/ is the number of
parameters in the unrestricted model.

� Chow test: test whether the true coefficients in two linear regressions on different data sets
are equal. Say our model is y D aC bxC ", and each unit is either male or female. We run
three regressions: one using the whole dataset () SSR), one only on males () SSRm),
and one only on females () SSRf ). Then perform the test using

F D
ŒSSR � .SSRm C SSRf /�=.K C 1/

.SSRm C SSRf /=ŒN � 2.K C 1/�
� F.KC1/;ŒN�2.KC1/�

Below are two illustrations1 on motivations for using Chow test. The first figure shows
that the two groups have different slopes, while the second shows that the two groups have
different intercepts.

1taken from the Internet.
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� Testing overall significance: model is y D ˇ0 C ˇ1x1 C � � � C ˇKxK C ", and hypothesis is
H0 W ˇ0 D � � � D ˇK D 0. The F statistic is

F D
.SSRH � SSR/=K

SSR=.N �K � 1/
D

R2=K

.1 �R2/=.N �K � 1/
� FK;.N�K�1/;

where R2 is the R2 of the model.
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4 Linear Regression and Causality

� (Mean) Regression Specification of Potential Outcomes:

Yi.Di/ D EŒYi.Di/�C Ui.Di/;

where EŒUi.1/� D EŒUi.0/� D 0.

� Causal effect for i :

�i D Yi.1/ � Yi.0/ D EŒ�i �C Ui.1/ � Ui.0/

� ATE and ATT 8<:ATE D EŒ�i �AT T D EŒ�i �CEŒUi.1/ � Ui.0/jDi D 1�

� (Mean) Regression Specification of Realized Outcomes:

Yi D Di � Yi.1/C .1 �Di/ � Yi.0/

D Di � .EŒYi.1/�C Ui.1//C .1 �Di/ � .EŒYi.0/�C Ui.0//

D EŒYi.0/�C�i �Di C Ui.0/

D EŒYi.0/�C .EŒ�i �C Ui.1/ � Ui.0// �Di C Ui.0/

D EŒYi.0/�CEŒ�i � �Di C "i ;

D ˇ0 C ˇ1 �Di C "i

where "i D .Ui.1/ � Ui.0// �Di C Ui.0/ is a linear function of Di .

ˇ1 � EŒ�i � is the ATE. But "i and Di are in general correlated, so EŒ"iDi � D 0 and hence
(A4) EŒ"i jDi � D 0 are in general violated. The OLS estimator would give a biased estimate
of ATE, unless we have ZCM:

EŒ"i jDi � D EŒ"i � D 0, EŒ"i jDi D 1� D EŒUi.1/jDi D 1� D 0 D EŒUi.0/jDi D 0� D EŒ"i jDi D 0�:

This can be achieved by two means:

� Random assignment experiment:8<:EŒUi.1/jDi D 1� D EŒUi.1/jDi D 0� D EŒUi.1/� D 0;

EŒUi.0/jDi D 0� D EŒUi.0/jDi D 1� D EŒUi.0/� D 0:
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� Mean independence assumption in observational settings:8<:EŒUi.1/jDi D 1� D EŒUi.1/� D 0;

EŒUi.0/jDi D 0� D EŒUi.0/� D 0:

� Conditional Independence Assumption (CIA)
In observational settings, ruling out selection by simply invoking ZCM and insisting on
using the naive comparison is likely to yield biased estimates of the causal parameters. An
approach is to assume that conditional on a set of variables Xi , the treatment is as good as
random assignment:

f .Y.0/; Y.1/jD;X/ D f .Y.0/; Y.1/jX/:

This implies 8<:EŒUi.1/jDi D 1;Xi � D EŒUi.1/jXi � D 0

EŒUi.0/jDi D 0;Xi � D EŒUi.0/jXi � D 0

Hence, the naive comparison conditional on X identifies the ATE conditional on X :

EŒYi jDi D 1;Xi � �EŒYi jDi D 0;Xi � D EŒYi.1/ � Yi.0/jXi � � ATE
X :

In general, our treatment variable Ti can take on multiple values. In terms of regression, our
model is

gi.t/ D ˇ0 C ˇ1t C �i with E.�i/ D 0

where gi.t/ is an individual-level response function mapping values of ti to potential out-
comes. Substituting the observed values of ti yields

yi D ˇ0 C ˇ1ti C �i with E.�i/ D 0

The concern here is that the treatment ti may be correlated with the error �i (EŒ�i jti � ¤ 0),
and hence the outcome yi . We solve this problem by assuming that

EŒ�i jti ; Xi � D EŒ�i jXi � D X
0
i
:

In other word, we assume that �i D EŒ�i jXi �C "i D Xi
 C "i with E."i/ D 0, so the error
has nothing to do with ti . The regression equation then becomes

yi D ˇ0 C ˇ1ti CX
0
i
 C "i :

Now it should be clear that ZCM holds (e.g. EŒ"i jti ; Xi � D EŒ"i jXi � D 0):

EŒ"i jti ; Xi � D EŒ�i �EŒ�i jXi �jti ; Xi �

D EŒ�i �X
0
i
 jti ; Xi �

D EŒ�i jti ; Xi � �EŒX
0
i
 jti ; Xi �

D EŒ�i jXi � �X
0
i


D 0
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5 Difference in Difference (DID)

If we also observe outcomes of units before the treatment, then we may take the difference

A � B D EŒYi;tC1.1/jDi D 1� �EŒYi;t.0/jDi D 1� D NY
T
tC1 �

NY Tt :

This is the Before-After (B-A) comparison. Because we are comparing mean outcomes, we can
use both pooled cross sections and panel data. Recall that the ATT is

ıAT T D EŒYi;tC1.1/jDi D 1� �EŒYi;tC1.0/jDi D 1�;

so we are substituting EŒYi;tC1.0/jDi D 1� by EŒYi;t.0/jDi D 1�. The problem is that Yi;s.0/
might change for different time period s. The mean outcomes before and after the treatment is
composed of both the treatment effect, and a time trend. For example, if health status improved
after treatment, it may be partially due to the treatment, but it may also be the case that all people
becomes healthier than before, so the A � B comparison would exaggerate the treatment effect.

In general, we can decompose A � B as

A � B D treatment_effectC trend;

where treatment effect and the trend can be in any direction. Then the true treatment effect is the
A � B comparison minus the trend:

treatment_effect D .A � B/ � trend:

We approximate the t rend for the treated by trend for the untreated. Since for the untreated
group treatment_effect D 0, we have trendun D .A � B/un, so the trend for the untreated is the
difference of their mean outcomes before and after:

DID D treatment_effect D .A � B/ � .A � B/un:

This is DID. A regression specification is

yit D .ˇ0 C ı0 � dAf tert/C .ˇ1 C ı1 � dAf tert/ � dT reatedi C �it :

In this case DID D ı1 D ıAT T :

Before After After - Before

Control ˇ0 ˇ0 C ı0 ı0

Treatment ˇ0 C ˇ1 ˇ0 C ı0 C ˇ1 C ı1 ı0 C ı1

Treatment-Control ı1
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Robustness checks:

� "Placebo" test: generate "placebo" treatments and compute DID. We should expect zero
effect.

� Sensitivity analysis: re-estimate the same DID regression in different sub-samples of units
and/or by adding covariates. Hope for stability of estimated effects across such perturbations.

� Adding covariates: account for factors that may capture different trends for treated and un-
treated units over time.
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6 Instrumental Variables (IV)

Setup:

yi D ˇ0 C ˇ1si C �i

D ˇ0 C ˇ1si C ŒX
0
i
 C "i �;

where some variables in Xi are omitted because unobservable and thus EŒ�i jsi � ¤ 0. An instru-
mental variable is a variable zi that satisfies two conditions:

1. Relevance: Cov.zi ; si/ ¤ 0
This condition is testable: estimate si D �0 C �1zi C errori and test the hypothesis that
�1 D 0 using a t test.

2. Validity: Cov.zi ; �i/ D 0
In words: the IV does not feature the same problem/failure of the treatment variable to be
instrumented. Hardly verifiable.

The intuition behind IV is that we use something that is irrelevant of the error �i to "nudge" the
treatment variable si , who then induces changes to outcome yi . This way we can infer the causal
effect of the treatment without bias.

We can recover the casual parameter ˇ1 as

Cov.yi ; zi/ D Cov.ˇ0Cˇ1siC�i ; zi/ D ˇ1Cov.si ; zi/CCov.�i ; zi/ D ˇ1Cov.si ; zi/C0 D ˇ1Cov.si ; zi/

+

ˇ1 D
Cov.yi ; zi/

Cov.si ; zi/
D
Cov.yi ; zi/=V .zi/

Cov.si ; zi/=V .zi/

6.1 IV as LATE

IV can be viewed as a method for estimating the local average treatment effect. Suppose we have
a random assignment of treatment. ((A2) random assignment) We let Zi denote the assignment status
for unit i . Zi D 1 if unit i is assigned to treatment and 0 otherwise. The problem here is that
compliance is not perfect and there are some units in the treatment group who do not get the
treatment, and there may also be units in the control group who get treated in the end. Ideally we
would like Di.0/ D 0 and Di.1/ D 1, but it may be the case that Di.1/ D 0 or Di.0/ D 1 for
some unit i . We can classify the units into four groups (A1):

Di.0/ D 0 Di.0/ D 1

Di.1/ D 0 Never-taker Defier
Di.1/ D 1 Complier Always-taker
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1. We maintain the assumption that the probability of treatment in the two assignment groups
must be different, otherwise there is no way to distinguish the two. In other words, Z andD
must at least be correlated: Cov.Zi ;Di/ ¤ 0. ((A3) nonzero ATE of Z on D)

2. We also have to maintain the assumption that outcomes are only affected by treatment; they
are not directly related to assignments, i.e. Cov.Yi ; Zi/ D 0. This implies in particular that
the treatment effect for never-takers is always zero, so they do not contaminate the observed
results. This assumption is however not testable, since we can not observe both assignment
status for one unit i and compare the two. ((A4) exclusion restriction)

3. Remember our goal here is to identify the effect of treatment for the compliers. We maintain
the assumption that all treated units that we observed in the control group are always-takers.
In other words, there are no defiers in the units. This way we can pin down the number of
compliers using our observed data:

compliers D .treatment group/ � .never-takers/ � .always-takers/;

where always-takers is the number of units in the control group that picked up the treatment,
and never-takers is the number of units in the treatment group that are not treated in the end.
((A5) monotonicity)

The observed average outcome for the treatment group (i.e.fi W Zi D 1g) is composed of

EfYi Œ1;Di.1/�g D ˛1 �EŒY.1; 1/ j compliers �

C ˛2 �EŒY.1; 1/ j always-takers �

C ˛3 �EŒY.1; 0/ j never-takers �;

where j̨ is the proportion of the corresponding group. Similarly, the average outcome for the
control group (fi W Zi D 0g) can be decomposed into

EfYi Œ0;Di.0/�g D ˛1 �EŒY.0; 0/ j compliers �

C ˛2 �EŒY.0; 1/ j always-takers �

C ˛3 �EŒY.0; 0/ j never-takers �;

Thus the difference is

EfYi Œ1;Di.1/�g �EfYi Œ0;Di.0/�g D ˛1 �
�
EŒY.1; 1/ j compliers � �EŒY.0; 0/ j compliers �

�
C ˛2 �

�
EŒY.1; 1/ j always-takers � �EŒY.0; 1/ j always-takers �

�
C ˛3 �

�
EŒY.1; 0/ j never-takers � �EŒY.0; 0/ j never-takers �

�
D ˛1 � LATE C 0C 0

D ˛1 � LATE
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We thus have
LATE D

EfYi Œ1;Di.1/�g �EfYi Œ0;Di.0/�g

proportion of compliers
:

If we use Zi as an IV for Di , we would obtain ˇ D Cov.Yi ; Zi/=Cov.Di ; Zi/. This actually
equals the local average treatment effect (LATE). First note that if Z is a binary random variable
such that Z D 1 with probability p, then

Cov.Y;Z/ D EŒYZ� �EŒY �EŒZ�

D EŒY j Z D 1� � p �
�
EŒY j Z D 1� � p CEŒY j Z D 0� � .1 � p/

�
� p

D p.1 � p/ �EŒY j Z D 1� � p.1 � p/ �EŒY j Z D 0�

D p.1 � p/ �
�
EŒY j Z D 1� �EŒY jZ D 0�

�
:

So we have

IV D
Cov.Yi ; Zi/

Cov.Di ; Zi/
D

EŒYi j Zi D 1� �EŒYi j Zi D 0�

EŒDi j Zi D 1� �EŒDi j Zi D 0�

D
EŒYi.1/� �EŒYi.0/�

P ŒDi.1/ D 1� � P ŒDi.0/ D 1�
D

EŒYi.1/ � Yi.0/�

EŒDi.1/ �Di.0/�

D
EfYi Œ1;Di.1/�g �EfYi Œ0;Di.0/�g

P ŒDi.1/ �Di.0/ D 1�

D LATE

In summary, if we use a binary variable Z as an instrument for treatment D, then the IV
estimate gives us the local average treatment effect, under assumptions (A1)–(A5).
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7 Regression Discontinuity Design (RDD)

7.1 Sharp RDD

Setup:
Our forcing variable is Xi . If Xi is larger or equal to a threshold, say c, then unit i will get treated;
if Xi < c, then unit i will not get treated. In other words, Di D 1fXi � cg. A classical example is
the effect of merit award on earnings. For a student i , if his scoreXi is larger than a threshold c then
he gets a scholarship, and no scholarship otherwise. The forcing variable is his score Xi and the
treatment variable Di is scholarship. Yi is his subsequent earnings. Yi.0/ is his potential earnings
without scholarship, and Yi.1/ is his potential earnings with the scholarship. The problem here is
that Yi.0/ and Yi.1/ are correlated with Xi : students with higher scores obtain higher earnings. So
if we want to know the effect of merit award on earnings, then comparing EŒYi.1/� with EŒYi.0/�
naively would get a biased result that incorporates not only the treatment effect, but also the effect
of test scores X (and hence other traits).

The idea of RDD is that we compare outcomes just around the (arbitrary) cutoff. Students just
above and just below the cutoff may have similar characteristics, so near the cutoff the assignment
of scholarships is as if random.

We would like to identify

EŒYi.1/ j c
C� �EŒYi.0/ j c

��

as the local average treatment effect. Here we are using EŒYi.0/ j c�� as a counterfactual for
unobserved EŒYi.0/ j cC�, i.e. the average outcome for those who get the awards if their awards
were deprived. So we are assuming that EŒYi.0/ j cC� D EŒYi.0/ j c

��, in other words the
function g.x/ D EŒYi.0/ j X D x� is continuous at the cutoff point c.

7.1.1 Parametric Estimation

To estimate the treatment effect using parametric methods, we define a new variable QXi D Xi � c.
Our model for EŒYi j QXi � can be:

� Linear, and common slope for EŒYi j QXi < 0� and EŒYi j QXi > 0�
Specifically, we assume EŒYi.0/ j Xi D x� is linear in x, and the treatment effect � does not
depend on Xi , i.e.

EŒYi.0/ j Xi � D ˛ C ˇXi and EŒYi.1/ � Yi.0/ j Xi � D �;
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which implies EŒYi.1/ j Xi � D � C ˛CˇXi . Therefore, the model for observed outcome is

EŒYi j Xi ;Di � D Di �EŒYi.1/ j Xi �C .1 �Di/ �EŒYi.0/ j Xi �

D ˛ C �Di C ˇXi

D Q̨ C �Di C ˇ QXi :

So we just regress observed outcome on Di and QXi .

� Linear, different slopes
We now allow treatment effect to depend on Xi . We specify that

EŒYi.0/ j Xi � D ˛0 C ˇ0Xi and EŒYi.1/ j Xi � D ˛1 C ˇ1Xi ;

so that the treatment effect is

EŒYi.1/ � Yi.0/ j Xi � D .˛1 � ˛0/C .ˇ1 � ˇ0/Xi :

The observed outcome model is therefore

EŒYi j Xi ;Di � D Di �EŒYi.1/ j Xi �C .1 �Di/ �EŒYi.0/ j Xi �

D ˛0 C ˇ0Xi C .˛1 � ˛0/Di C .ˇ1 � ˇ0/DiXi

D .˛0 C ˇ0c/C ˇ0 QXi C f.˛1 � ˛0/C .ˇ1 � ˇ0/cgDi C .ˇ1 � ˇ0/Di
QXi

D Q̨ C �Di C .ˇ0 C Q̌Di/ QXi :
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Note that � D EŒYi.1/� Yi.0/ j Xi D c�, the LATE at the threshold. So in this case we just
regress Yi on QXi , Di and the interaction Di

QXi .

� non-linear
EŒYi.0/ j Xi D x� and EŒYi.1/ j Xi D x� can be non-linear in Xi , and treatment effect can
also vary across Xi . E.g. quadratic specification:

EŒYi j Xi ;Di � D .
0 C �Di/C .
1 C ˛1Di/ QXi C .
2 C ˛2Di/ QX
2
i :

In this case, � is still LATE at the threshold: � D EŒYi.1/ � Yi.0/ j Xi D c�.
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7.2 Fuzzy RDD

In this scenario, compliance is not perfect. The outcome is determined through

Xi �! Zi �! Di �! Yi

where Xi is unit i ’s score, Zi is the encouragement for treatment, i.e. Zi D 1fXi � cg, and Di is
the treatment. To identify the treatment effect, we need to assume

1. Both EŒDi.z/ j Xi D x� (potential treatment) and EŒYi.z/ j Xi D x� (potential outcome)
are continuous in x around Xi D c, for z D 0; 1.

2. Monotonicity, exclusive restriction, and relevance of Zi .

Our estimand is

�F D EŒYi.1/ � Yi.0/ j unit i is complier and Xi D c�:

It is identified as

�F D
EŒYi.1/ j c

C� �EŒYi.0/ j c
��

EŒDi.1/ j cC� �EŒDi.0/ j c��
:
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7.2.1 Parametric Estimation

We can estimate �F using 2SLS:

Yi D ˇ0 C � ODi C .ˇ1 C ˇ2Zi/ � QXi C "i ;

where ODi is instrumented by Zi .
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