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In this article, we give a quick introduction to set theory. Section 1 contains a review of
algebra of sets, functions, and power sets. Section 2 discusses Russell’s paradox, following
which we mention the axiom of specification in ZFC set theory. Sections 3 is on countability
and uncountability of sets. We prove basic properties of countable sets, and then give a
discussion of the Continuum Hypothesis.

1 Basic Notions

1.1 Sets, Algebra of Sets
A set is a collection of objects. Examples are:

1. fApple; Orange; Mangog;

2. f1; 2; 3g;

3. f1; 2; 3; f4gg;

4. N D f1; 2; 3; 4; 5; :::g, the set of natural numbers;

5. R, the set of real numbers.

We write u 2 A if u is an element of A. We use ¿ to denote the empty set. The union of
two sets A and B , denoted as A[B , is the set that in which we put all elements of A and B

together. The intersection of two sets A and B , denoted as A\B , is the set that contains all
common elements of A and B . See Figure 1.1.

A [ B D fu W u 2 A or u 2 BgI (1)

A \ B D fu W u 2 A and u 2 Bg: (2)

Given two sets A and B , we say that A is a subset of B , denoted as A � B , if for every
u 2 A we also have u 2 B . The two sets are said to be equal if and only if A � B and
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Figure 1.1: union and intersection of two sets
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Figure 1.2: difference and complement of two sets

B � A, in which case we denote as A D B . Given A and B , B n A, the difference of B to
A is the set of all elements that is in B but not in A:

B n A D fx 2 B W x … Ag: (3)

Let A � U . The complement of A in U , denoted as Ac , is defined to be U n A. See Figure
1.2. The following observations are obvious:

1. A [¿ D A; A \¿ D ¿;

2. A � A;

3. If A � U , then A [ U D U , and A \ U D A;

4. A [ Ac D U , and A \ Ac D ¿;

5. .Ac/c D A.

Proposition 1.1 (De Morgan’s laws).

1. .A [ B/c D Ac \ Bc;

2. .A \ B/c D Ac [ Bc .
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Proof. Let u 2 .A [ B/c . Then u is excluded from both A and B . So on one hand u

cannot be in A, that is, u 2 Ac; on the other hand, u also cannot be in B , so u 2 Bc . Thus,
u 2 Ac \ Bc . This proves .A [ B/c � Ac \ Bc .

To prove the reverse inclusion, let u 2 Ac \ Bc . If u is not in .A [ B/c , then it must
be the case that u 2 A [ B . In this case, u is in either A or B . If u 2 A, then we reach a
contradiction: recall that our u is in Ac (as well as in Bc). Similarly, if u 2 B , then this again
contradicts our assumption about u. Thus u 2 .A[B/c , proving .A[B/c � Ac\Bc . This
completes the proof that .A[B/c D Ac \Bc . The second relation is proved similarly.

Given two sets A and B , their Cartesian product A � B , is the set of all ordered pairs
.a; b/, where a 2 A and b 2 B:

A � B D f .a; b/ W a 2 A and b 2 Bg (4)

For example, if A D f1; 2; 3g, and B D fs; tg, then A � B D f.1; s/; .1; t/; .2; s/;

.2; t/; .3; s/; .3; t/g. The set R2 D f.x1; x2/ W x1 2 R; x2 2 Rg is the usual 2-dimensional
Euclidean plane, and R3 D f .x1; x2; x3/ W xi 2 R for each i D 1; 2; 3g is the 3-dimensional
Euclidean space. Similarly, Rn is the set of all ordered pairs .x1; x2; :::; xn/, where xi 2 R
for each i D 1; 2; :::n.

1.2 Functions
Definition 1.2. Given two sets X and Y , a function f W X �! Y from X to Y associates
each x 2 X with one element f .x/ 2 Y . X is called the domain of the function, and Y is
called the range of the function.

A function can send multiple elements in domain X to a single element y in range Y , but
it cannot send an element x 2 X to multiple elements in Y . A function f is called injective
(or one-to one) if for every x1 ¤ x2 we have f .x1/ ¤ f .x2/. It is called surjective (or onto)
if for every y 2 Y there is an x 2 X such that f .x/ 2 Y . It is called bijective (or one-to-one
and onto) if it is both injective and surjective. A function may not be injective. f W R ! R
given by f .x/ D x2 is an example: 3 ¤ �3, but 32 D .�3/2 D 9. It is also not surjective:
since squares of real numbers are nonnegative, no x 2 R is sent to .�1; 0/. By contrast,
f W .��

2
; �
2
/! R defined by f .x/ D tan.x/ is bijective. See Figure 1.3.

1.3 Power Sets
We use jAj to denote the number of elements of a set A, i.e., the “cardinal" of A. For
example, jf1; 2; 3gj D 3 since this set contains three elements.

Definition 1.3. For a set A, the power set of it is the set of all subsets of A. We denote it as
P .A/ or 2A.

If A D f1; 2; 3g, then P .A/ D f¿; f1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3g; f1; 2; 3gg. As you
can see, the power set of A contains 8 D 23 elements, i.e., jP .A/j D 2jAj. This is actually
not a coincidence:
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/! R defined by f .x/ D tan.x/ is bijective

Figure 1.3: injectiveness and surjectiveness of functions

Proposition 1.4. For a finite set A, jP .A/j D 2jAj.

Proof. To every subset of A we can associate a characteristic function. Specifically, if S is
a subset of A, then we define

IS.u/ D

(
1 if u 2 S I

0 if u … S:
(5)

The characteristic function is an indicator of the subset: it “switches on" to 1 when an
element u 2 A is in S , and it “switches off" to 0 when an element u 2 A is not in S . This
function uniquely represents S , and different subsets have different characteristic functions
associated with them. Thus, to count the total number of subsets of the set A, we need only
count the number of all characteristic functions defined on A.

Suppose jAj D n and write out the elements of A as A D fa1; a2; :::; ang. Then each
element ai of A is sent either to 0 or 1 by some characteristic functions. Thus each charac-
teristic function can be writen out explicitly as an n-tuple. For example, .1; 0; :::; 0/ is the
characteristic function on A that is equal to 1 on fa1g and 0 on the remaining part of A. Thus
the function is Ifa1g and this function represents the subset fa1g. Similarly, .1; 1; 0; :::; 0/

is Ifa1;a2g and represents the subset fa1; a2g; .1; 1; :::; 1/ represents the whole set A, and
.0; 0; :::; 0/ represents the empty set ¿. See Figure 1.4 for an illustration when A contains 6

elements.
So how many such n-tuples are there? The first slot can take two values, either 0 or 1. So

every tuple is either .0;� � �/ or .1;� � �/. The second slot can also take either 0 or 1. So
there are 2� 2 D 4 cases regarding the first two slots: .0; 0;���/, .0; 1;���/, .1; 0;���/

and .1; 1;���/. Every tuple has one of the four cases. Upon each of the four cases, the third
slot can also take 0 or 1, so there are 2 � 2 � 2 D 8 cases of the first tree slots. Continuing
this way, we see that the total number of such n-tuples must be

2 � 2 � :::::: � 2„ ƒ‚ …
n

D 2n (6)

This completes the proof. This proposition also explained the term “power set” as well as
the notation 2A.
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Figure 1.4: the characteristic function of fa2; a5g for jAj D 6

2 Russell’s Paradox
We often create sets by specifying various conditions. For example, fx 2 R W x � 0g is the
set of nonnegative real numbers. If f and g are two real-valued functions defined on the
interval Œ0; 1�, then fx 2 Œ0; 1� W f .x/ D g.x/g is the subset of Œ0; 1� on which the values of
f and g coincide.

It seems that once we specify some arbitrary condition P.x/, the set fx W P.x/g will
always exist. In 1901, Bertrand Russell (1872–1970) showed that this can lead to paradox.
Let the condition P.x/ be “x … x”, i.e., “x is not a subset of itself”. For example, if
x D fall triangles in the planeg, then x … x, since the set itself is not a triangle. Denote this
set by R:

R D fx W x … xg: (7)

Then is R 2 R? If R 2 R, then R should satisfy the defining condition P.x/, which is
“x … x", thus R … R; On the other hand, if R … R, i.e., if R is not a subset of itself, then R

satisfy the condition “x … x", thus R is an element of the set R, i.e., R 2 R. We are thus led
to a paradox:

R 2 R H) R … RI (8)

R … R H) R 2 R: (9)

Conclusion. The set R D fx W x … xg does not exist.

Russell’s paradox has many real-life illustrations, one of them being the barber para-
dox. Suppose a barber only shaves fall men who do not shave themselvesg. The question is,
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should the barber shave for himself? If he shaves himself, then he should fall into the set, i.e.,
he is a man who does not shave for himself. On the other hand, if he does not shave himself,
then he is in the set fall men who do not shave themselvesg. Since his job is to shave all the
men in this set, he should also shave himself. The conclusion is that such a barber cannot
exist.

Russell’s paradox was proposed in the early days of set theory. It manifested the need
for a system of axioms for the subject. Many axiomatic systems have been developed, but
the standard and common one is the Zermelo–Fraenkel set theory, which, together with the
Axiom of Choice, is abbreviated as ZFC. One of the axioms in Zermelo–Fraenkel set theory
is the axiom of specification, which states:

Axiom of Specification. To every set A and every condition P.x/ there exists a subset B of
A such that B D fx W P.x/g.

The axiom says that to search for the set that satisfies some condition P.x/, we have to
first specify a place A, and our search result must lie in this place (the subset B in the axiom).
We are not allowed to search for something out of nowhere, as in the case of Russell’s
paradox. Notice that both two examples given at the beginning of this section satisfy the
axiom of specification: for the first one A D R and for the second one A D Œ0; 1�. In
contrast, the set R D fx W x … xg does not specify a place for us to seek x according to
x … x. The axiom of specification rules out such illusory sets, and the paradox is avoided.

3 Countability and Uncountability
Definition 3.1. For two sets S and T , we say that S has cardinality less or equal to T and
denoted by jS j � jT j, if there is an injective function from S to T . We use jS j < jT j to
denote the situation where there exists an injective function from S to T , but no surjective
function from S to T exists. We say that two sets S and T have the same cardinality, denoted
by jS j D jT j, if there is a bijective function between S and T . If jS j � jNj, then we say S

is countable; otherwise (jS j > jNj) it is said to be uncountable.

Theorem 3.2 (Schröder-Berstein Theorem). If jS j � jT j and jT j � jS j then jS j D jT j.

Remark. The theorem says that if there exist an injective function from S to T , and an
injective function from T to S , then there exists a bijection between S and T . While this
seems intuitive, the proof of this theorem turn out to be a little bit complicated. The reason
for the difficulty is that we are actually not comparing numbers, but we are seeking a bijective
function, and it is not straightforward to construct such a function from two arbitrary injective
functions.

Proof. Let f be an injective function from S to T , and let g be an injective function from T

to S . We need to find a bijective function from S to T .
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Define S0 WD S n g.T /, and define SnC1 D gf .Sn/ recursively. Let S1 D
S1
nD1 Sn.

Define h W S ! T by

h.x/ D

(
f .x/ if x 2 S1I

g�1.x/ otherwise:
(10)

We claim that h is a bijective function from S to T .
We first verify h is injective. Given x; y 2 S; x ¤ y, we need to show that h.x/ ¤ h.y/.

Now, if x and y are both in S1 or both in Sc1, then the injectiveness of h follows from the
injectiveness of f and g. If x 2 S1; y 2 Sc1, and h.x/ D h.y/, then f .x/ D g�1.y/ by
the definition of h. But this means that y D gf .x/ 2 gf .Sn/ D SnC1 for some n, which
contradicts our assumption about y. This shows that h is injective.

We next verify surjectiveness. Let z 2 T . We need to find some element x 2 S such
that z D h.x/. Let x D g.z/. If x … S1, then h.x/ D g�1.x/ D z. On the other hand, if
x 2 S1, then x 2 Sn for some n > 0. By definition of Sn, this means that x 2 gf .Sn�1/,
and consequently, x D gf .x0/ for some x0 2 Sn�1. Then z D g�1.x/ D f .x0/ D h.x0/.
This completes the proof that h is surjective.

Every finite set is certainly countable; the natural number N itself is countable, yet it
contains infinitely many elements. In this case we say that it is countably infinite. Now we
prove some properties of countable sets.

Proposition 3.3. If jS j � jNj, then jU j � jNj for any U � S . (Any subset U of a countable
set S is countable)

Proof. This is obvious. Let f be an injective function from S to N. Then f restricted to
any subset U of S is an injective function from U to N. Thus U is countable.

Proposition 3.4. Suppose S D
S1
iD1 Si , where jSi j � jNj for each i . Then jS j � jNj.

(Countable union of countable sets are countable)

Proof. List elements of each Si as fai1; ai2; ai3; ai4; :::g and stack them together, we get the
following array of S :

a11 a12 a13 a14 : : :

a21 a22 a23 a24 : : :

a31 a32 a33 a34 : : :

a41 a42 a43 a44 : : :
:::

:::
:::

:::
: : :

Label elements of S by 1; 2; 3; ::: along the diagonal of the array as following, we obtain
an injection from S to N.
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a11 a12 ! a13 a14 ! a15
# % . % .

a21 a22 a23 a24
. % .

a31 a32 a33
# % .

a41 a42
.

a51
:::

Corollary 3.5. jZj D jNj. (The set of integers Z is countable)

Proof. Apply the above proposition to Z D f:::;�3;�2;�1g [ f0g [ f1; 2; 3; :::g.

Proposition 3.6. Suppose jS1j � jNj and jS2j � jNj . Then jS1 � S2j � jNj. (Cartesian
product of two countable sets are countable)

Proof. List elements of S1 as S1 D fa1; a2; a3; :::g and similarly list elements of S2 as
S2 D fb1; b2; b3; :::g. Then we can write out all elements of S1 � S2 as

.a1; b1/ .a1; b2/ .a1; b3/ .a1; b4/ : : :

.a2; b1/ .a2; b2/ .a2; b3/ .a2; b4/ : : :

.a3; b1/ .a3; b2/ .a3; b3/ .a3; b4/ : : :

.a4; b1/ .a4; b2/ .a4; b3/ .a4; b4/ : : :

.a5; b1/ .a5; b2/ .a5; b3/ .a5; b4/ : : :

:::
:::

:::
:::

: : :

Now we can use the same counting method as in 3.4 to count the elements of S1 � S2
along the diagonal.

Corollary 3.7. jQj D jNj. (Rational numbers are countable)

Proof. Recall that rational numbers Q is the set of numbers of the form m
n

with m and n

relative prime to each other, like 2
3

and 9
1
. We can write each element m

n
of Q as .m; n/, thus

making Q a subset of Z�Z. Since Z is countable by 3.5, the above proposition implies that
Z �Z is again countable. Then 3.3 implies that jQj � jNj. On the other hand, the function
f W N! Q defined by f .n/ D n for each n 2 N is obviously injective, so jNj � jQj. 3.2
now implies jQj D jNj.
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Proposition 3.8. If jS j D jT j, then jP .S/j D jP .T /j.

Proof. Let f be a bijection between S and T . Then F W P .S/! P .T / defined by

F.A/ D ff .x/ W x 2 Ag; A � S (11)

is a bijection between P .S/ and P .T /.

Remark. Surprisingly, the converse of the above theorem, i.e., jP .S/j D jP .T /j impling
jS j D jT j, is actually independent of ZFC.

Theorem 3.9. For any set S , jS j < jP .S/j.

Proof. Suppose, by contradiction, that there exists a surjective function from S to P .S/.
Then, in particular, for the set

N D fx 2 S W x … f .x/g (12)

there should correspond to an element x0 2 S such that f .x0/ D N . Then is x0 2 N ? if
x0 2 N , then by the definition of N , x0 … f .x0/ D N ; On the other hand, if x0 … N D

f .x0/, then again by definition x0 2 N . We have showed

x0 2 N ) x0 … N I (13)

x0 … N ) x0 2 N: (14)

Thus there cannot exist a surjective function from S to the power set of S .

In particular, jNj < jP .N/j, so P .N/, the set of all subsets of N, is uncountable. We
now prove that there is actually a bijection between real numbers and P .N/.

Theorem 3.10. jRj D jP .N/j.

Proof. We first find an injection from R to P .Q/. For any real number r , the function

f .r/ D fq 2 Q W q < rg (15)

is injective from R to P .Q/: if r1 ¤ r2, then it is obvious that f .r1/ ¤ f .r2/, so jRj �
jP .Q/j. Since jQj D jNj by 3.7, we have by 3.8 jP .Q/j D jP .N/j, so that jRj � jP .N/j.

We next prove jP .N/j � jRj. As in the proof of 1.4, we identify each subset of N D
f1; 2; 3; :::g with its characteristic function, which in turn can be written out as an infinite
sequence consisting of 0s and 1s. Then each sequence can be mapped to a real number r

in Œ0; 1/, where r has its decimal expansion as the sequence, and the mapping is obviously
injective. 3.2 then implies that jRj D jP .N/j.
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Figure 3.1: the Continuum Hypothesis states that there is a gap between discreteness and
continuum.

Now we know that jNj < jP .N/j by 3.9, and the later is actually the cardinality of the
real numbers. jNj is the “number of elements” of a discrete infinite sequence, while jRj is
the “number of elements” of a continuous infinite line. Then is there some other cardinals
between them? In other word, is there some set S such that

jNj < jS j < jRj ‹ (16)

Continuum Hypothesis (CH). No such S exists. In other word, if jS j > jNj, then jS j �
jRj.

The Continuum Hypothesis is proven to be independent of ZFC by Kurt Gödel (1906–
1978) and Paul Cohen (1934–2007). Note that discreteness is inherent in our definition of
injectiveness and surjectiveness of functions, our notion of cardinality, and countability and
uncountability of sets. After all, cardinality is about “counting the number of elements of
a set”, and counting is a “discrete” methodology. The Continuum Hypothesis reflects our
inability to “count” uncountable sets: if some set is uncountable, then it contains “too many
elements” to be distinguishable from the real line. In other words, the discrete concept of
counting becomes less meaningful for continuums.
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