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Part I

Probability Theory



1 Measures and Integrations

1.1 The Monotone Class Theorem

Definition 1.1. Let X be some set, and let #(X) be its power set. A subset A C P (X) is called a o-algebra if it
satisfies the following three properties:

1. X € A;
2. A is closed under complementation: A € A = X \ A € A;

3. A is closed under countable unions: Aq, 45,--- € X = U?L A; € A.

It follows from the definition that a o-algebra is also closed under countable intersections. Elements of the o-
algebra are called measurable sets. An ordered pair (X, #4), where X is a set and 4 is a g-algebra over X, is called a
measurable space. A function between two measurable spaces is called a measurable function if the preimage of every
measurable set is measurable. We can characterize o-algebras in terms of simpler structures, w-systems and Dynkin

systems:

Theorem 1.2. A C P (X) is a o-algebra if and only if it is both a 7-system and a A-system.

e A m-system (or p-system) P is a collection of subsets of X that is closed under finitely many intersections;

e a Dynkin system (or A-system) D on X is a collection of subsets of X that contains X and is closed under

complement and under countable unions of disjoint subsets:

1. X € D;
2. if A € D, then A€ € D;
3. if Ay, A, A3, ... aresuch that A; N A; = @ foralli # j, then U:ozl A, €D.

Equivalently, D is a Dynkin system if

1. X € D;
2. if A,Be Dand A C B,then B\ A € D,
3. for Ay C Ay C A3 C -+~ we have | J,~, Ay € D.

The statement can be verified by noting that conditions 2 and 3 in the defninition of Dynkin system together with
closure under finite intersections imply closure under countable unions.

Why do we care about -systems and A-systems? One reason is the Dynkin’s 7z-A theorem (or the monotone class
theorem). It is an essential tool for proving many results about properties of specific o-algebras.

Theorem 1.3 (Monotone Class Theorem / 7-A Theorem). If P is a w-system and D is a A-system such that P C D,
theno(P) C D.

Often, we want some o-algebra #4 to have some desirable property. To do so, we may collect all sets satisfying
some property into a collection D. We may then find some collection P C D such that it is closed under intersection,
and generates +. If we can demonstrate that D is a A-system, then we can use the theorem to conclude that A = o (P)
also enjoys the property. One of the most fundamental uses of the -A theorem is to show equivalence of separately

defined measures or integrals.



Example 1.4. Let ([0, 1], B(R), 1) be the unit interval [0, 1] with the Lebesgue measure on Borel sets. Let u” be
another measure on [0, 1] satisfying u'([a, b]) = b — a, and let D be the family of sets S such that uz (S) = u/'(S).
Let I = {(a,b),[a,b),(a,b],[a,b] : 0 < a < b < 1}, and observe that [ is closed under finite intersections, that
I C D, and that B(R) is the o-algebra generated by /. It may be shown that D is a Dynkin-system. From Dynkin’s
7-A theorem it follows that o(/) = B(R) C D, from which we conclude that the Lebesgue measure is unique on
B(R).

Example 1.5. The -1 theorem can also motivate the use of distribution functions in probability. Recall for random

variable X : Q — R, its distribution function is defined as
Fx(x) =P{X <x}, x€eR
Recall the measure it induced on R is
u(B) =P{X"'(B)}. BeBR).

so the distribution function specifies the measure on {(—o0, x] : x € R}, which is a 7-system. By the same argument
as in Example 1.4, if two random variables X and Y equal in distribution (Fx = Fy), then they have the same
probability measure on R. Distribution functions thus uniquely characterize random variables.

A similar result of the monotone class theorem for functions also holds.

Theorem 1.6. Let (X, #) be a measurable space. Let P be a w-system that constains X andlet ¥ = {f : X — R}
(similar to the role of a Dynkin system) be a collection of real-valued functions with the following properties:

. Ae P=>14€e ¥,
2. ,ge¥F = f+geFandcf € F for any real number c;
3. if {fu} C F is a sequence of non-negative functions that increase to a bounded function f, then f € F.

Then ¥ contains all bounded functions that are measureable with respect to o (P).

Often, P is a generating class of #4 (i.e. 0(P) = ), so if ¥ enjoys some desired property, then so does the space
of all bounded (real-valued) measurable functions on X.

Proof. The assumption that X € P, together with 2 and 3 imply that D = {4 € X : 14 € ¥} is a A-system. By 1,
P C D. By the n-A theorem (Theorem 1.3), (P) C D. This means ¥ contains all indicator functions defined on
sets in o (P). 2 then implies that ¥ contains all simple functions defined with respect to o (P), and then 3 implies that

F contains all bounded measurable functions with respect to o (P). O

In the course of the proof, we used an important approximation result: a function f : X — R4 is measurable if

and only if there exists a non-decreasing sequence { f, }»>1 of simple functions such that f, 1 f,i.e. forany x € X

() = Jim fu(x).

1.2 Measurable Spaces and Functions
We record here on some properties about measurable spaces and functions:

e Measurability on generating class: if f : (E,8) — (F,¥)and ¥ = o(€), then f is &/F -measurable if and
only if
fY(Bye& VBee®.



e Continuous functions are measurable: if f : E — R is continuous, then f is §/8B(R)-measurable where
& = B(F) is the Borel g-algebra on E. This is because the preimage of f is open for every open set in R.

e Products of measurable spaces: Let (E, &) and (F, ) be two measurable spaces. The product o-algebra & ® ¥
is defined as
ERF =0({AxB:Ac€&,BefF})

and (E x F,& ® F) is a product measurable space. A special case is when £ = F = R, where 4 and B take
the form of open intervals, so that the generating class of 8(R) ® B(R) is the set of open rectangles. We have
B(R?) = B(R) ® B(R). This is because the set of open rectangles is a basis for the topology of R2.

e Other examples
¢ Since € = {(—o00,z] : z € R} is a generating class for the Borel o-algebra of R, a real-valued function
f 1 E — Ris &/B(R)-measurable if and only if f~!((—o0,z]) = {x € E : f(x) < z} € & for any
z e R

¢ Composite functions are measurable: for
f — &
(E,8) > (F,¥) > (G,9)

the function g o f is & /%-measurable.
¢ An indicator function 14 : (E, &) — {0, 1} is measurable if and only if 4 € &.

o If{ fu}n>1 is a sequence of &/ B(R)-measurable functions, then
inf f, and sup f»
n n

are measurable as well. Consider the latter. It suffices to show that {x € E : sup, fn(x) <z} € & for any
z € R. But

(r e E:sup fox) <2} = (V{x€E: fulx) <z}

n>1
and since each set in the intersection is in & and & is closed under countable intersections, we have the

desired result. In a similar fashion,

hmsup Jo = hm sup fn = mf sup f, and  liminf f, = hm 1nf fu = sup inf f,

—>OOn>N }’L>N N—>ocon>N N>1n>

are all measurable.

¢ As stated above, a positive real-valued function f : E — R4 is measurable if and only if there exists a
non-decreasing sequence { f, },>1 of simple functions such that f, 1 f.
1.3 Measures
Definition 1.7. Let (E, &) be a measurable space. A mapping i : & — [0, +0¢] is called a measure on (E, §) if
w(@) = 0;
2. for any collection of pairwise disjoint sets A1, A>,... € &,i.e. A4; N A; =@ Vi # j, one has

U4 | =D .
i>1 i>1

When p(E) < oo, the measure p is said to be finite.



Example 1.8. Below are some basic examples.
e Point mass/Dirac measure at x: let x € E. Define p,(A) forany A € & as

1 ifxed

xA=
meld) =1 ifx ¢ A

e Counting measure: Let D C E be countable and for any A € & define u(A) as

u(A) = AN D[ =} 5:(4).
xeD

e Discrete measure: let D C E be countable and m : D — Ry. Define v(A) for any A € & as
v(d) = Y m(x)8,(A).
x€D

Note the relationship between counting measure and discrete measure: for A € &, u(A) = 0 implies that
v(A) = 0. We say that v is absolutely continuous with respect to p. We write v << L.

1.4 Lebesgue Integration

Let (E, &, t) be a measure space. We consider how to define integration u( f) for measurable functions f : E — R.

For a simple function like
n
f=) aily,,
i=1

where a; > 0 and {A4,..., A,} is a partition of E into &-sets, we can define the integration of f as

p(f) = aip(A).

i=1
For a non-negative function f : E — R4, we know there exists a sequence of simple functions { f },>1 such that
fn 1 f. Note that
— since f, is simple, p( fy,) is defined;
— since fp < fut1, we have n(fn) < n(fn+1).

Thus we can defnine u( f) as
u(f) = lm p(fn).
For a general measurable function f : E — R, we can split it into positive part £ = max{f,0} = f Vv 0 and
negative part f~ = —min{ £,0} = —(f A0),sothat f = f+ — f~. Since both () and u( f ~) are defined, we
may define

w(f) = pn(f*)—pu(f7)

provided at least one of the two summands on the right hand is finite. If u(f %) = u(f~) = +oo, then u(f) is
undefined. Note that f is integrable if and only if w(] f]) < 4o0.



2 Probability Theory

2.1 Probability Spaces
A probability space (2, ¥, P) is a measure space where P(€2) = 1. Below are some elementary properties:

e (Monotonicity) For A, B € ¥ such that A C B, one has P(A4) < P(B).

e (Inclusion/exclusion formula) For any n > 1 and A4, ..., A, € ¥ one has

n

P [U A,-] =Y P(A) =Y P4 NA)+ ...+ (D"TP(A NN Ay).
i=1

i=1 i<j
Note that for n = 2, the formula is P(A; U Ay) = P(A4;) + P(A2) — P(A; N Ap). If Ay, ..., A, are pairwise
disjoint, then

[ n T n
P UA,- =ZIP(A,-).
Li=1 i=1

e For any collection A;, A, ... of sets in ¥ one has

e ] 0o
P4 | =) Py
Li=1 i=1

e (Continuity of P)If A, 1 A € 7, then P(4,) 1 P(A). If A, | A € ¥, then P(4,) | P(A).

Proof. Let {A,}n>1 be non-decreasing and let By = A; and B, = A, \ An—1 forn > 2. We have

n o0
An=|JBi. A=|JBi. and BiNB; =@ Vi#|
i=1 i=1

so that

o0 n n

PM»=ZW@»=3&§:M&rag&POJ&)=g$wm»

i=1 i=1 i=1
If {A,}n>1 is non-increasing and A, | A, then {A¢},>; is non-decreasing and A 1 A€. From the previous
part P(AS) 1 P(A€), so that

P(An) = P2\ A = 1 = P(4S) | 1~ P(4) = P(A).
O

e (Continuity implies countable additivity) The above point demonstrated that countable additivity implies counti-
nuity. Here we prove a converse: if P is continuous along monotone sequences, i.e. 4, | @ = P(4,) | O,
then P is countably additive.

Proof. Let {B;}$2, be a collection of pairwise disjoint sets in %, let B = (J;2, B;, and let C, = | J;2, Bi.
Then C,, D Cp41 and C,, | @. We have

() oo ()] o )

n—1
=P(B) - Y _P(B)).

i=1



Let n — oo we have by continuity

o0
0= lim P(C,) =P(B)~) B

i=1

as desired. O

2.2 Random Variables
If X : Q — Ris areal-valued random variable, then
Px(A) = P(X € A) = P{X!(4)}, A€ B(R)

defines a probability measure on R. Since € = {(—o0, x] : x € R} is a w-system generating B(R), Py is identified by
the function
x > Fy (x) = Py ((—o00,x]) = P{X < x},

known as the distribution function. The distribution function satisfies three properties:

1. x <y = Fx(x) < Fx(y),i.e. Fx is non-decreasing;
2. lim Fy(x) =0and lim Fy(x)=1;
X—>—00 x—+00

3. Fy is right continuous, i.e. for any x € R one has Alir? Fx(x + Ax) = Fx(x).
x40

The converse is also true: if a function F satisfies the three properties, then there exists a unique probability
measure P on (R, B(R)) admitting F as its distribution function, i.e.

P((—o0,x]) = F(x) VxeR.

Given a distribution function F, there is also a corresponding probability space and a random variable: take
Q =100,1], F = 8[0,1], P = ur and X(w) = inf{z € R : F(z) > w}, namely for w € [0, 1] on the vertical
y-axis, draw a horizontal line and cross the graph of F'; the x-value of the intersection is the value of X(w). Roughly
F(x) =w,sothat P{X < x} = ur([0,w]) = w = F(x).

Now let’s talk about densities. Recall the Radon-Nikodym theorem:

Theorem 2.1 (Radon-Nikodym theorem). Let u be a o-finite measure on (E, &) and let v be another measure such
that v <« u. Then there exists a measurable function f : E — R4 such that for any A € & one has

b(4) = /Afdu. (1

The function f is almost-everywhere unique with respect to w, in the sense that if g is another function that satisfies

d
Eq. (1) then u{f # g} = 0. It is called the Radon-Nikodym derivative and is denoted by d_v
i

e Let D C R be a countable set and note that the counting measure u is o-finite. If Py < u, then the probability
distribution of X is discrete and the Radon-Nikodym derivative of Py with respect to u is

d
o= =pix =,
"

the probability mass function of X. We have f(x) > Oforany x € Rand ), ., f(x) = 1.



e The Lebesgue measure 7 on R is o-finite. If Py < ur, then
dPx
o) = 25 @)
ML

is the probability density function of X. It can be seen that f(x) > O for any x € R and [, f(x)dx = 1.
So in this course, we regard the “probability density function” taught in elementary probability courses, as the
Radon-Nikodym derivative of two measures. This approach gives a precise meaning of the concept of densitiy

functions, and it unifies both the discrete case and the continuous case.

Example 2.2 (Examples of Densities). Here are common probability densities in terms of Radon-Nikodym derivatives.
o (Degenerate distribution at x¢) For X = x¢, we have Py (4) = éx,(A) for A € B(R). Its distribution function
is
Fx (x) = Px ((—00, x]) = Txg,+00) (X).

e (Poisson distribution) Let v = )", .\, 8, be the counting measure on N. We say X has Poisson distribution with
mean A > 0 if Py < v and
dP A*
P{X =x}= —>(x) = —e¢*
dv x!
so for any A € B(R)
d Py A
Px(4) = | ——dv = —e .
x(4) /A D DL

keANN

e (Binomial distribution) Let p € (0,1) and let v, = Y, 8; be the counting measure on {0, 1,...,n}. A
random variable X is said to have the binomial distribution with parameters (n, p) if Py < v, and

dP
P{X = x} = ZX(x) = (Z)pxa — )

so forany 4 € B(R)

dP n e
[PX(A)=/AdVden= >, }(k)p"a—p) k.

n keAn{o,...,

e (Gamma distribution) A random variable X is said to have the gamma distribution with shape « > 0 and rate
B > 0if Py < pur and

d Py B a1 —p
——(x) = ——x“" e P 1 9.00) (X),
dpLL( ) r@ (0,00) (X)
so for any A € B(R)
dPx / B a-1,-8
Px(A) = | ——du = —x% e P¥dx.
x(4) /A duy HL AN(0,00) I'(a)

Recall the gamma function is defined as

o0
I'(x) =/ x4 le™dx
0

so that Px ((0, 00)) = 1.

o (Gaussian distribution) A random variable X is said to have the Gaussian distribution with mean p and variance
o?if Py <« ur and

dPx 1 _—w)?
— 2 (x) = e 202 Vx eR
d/LL( ) o2
so for any A € B(R)
dPy 1 _G=w?
Px(A) = | ——dur = /e 202 dx.
) 4 dur # o2 Ja

10



e (Uniform distribution) for the uniform distribution on interval [a, b], its density is

d Py
“X)= —1
d,uL( )= Naer(¥)
so that JP !
Px(A) = —XduL = / dx.
A dpL Anfa,p] b —a

2.3 Expectations
Let X be a random variable defined on a probability space (2, ¥, P).

Definition 2.3. The expectation of X is defined as

EX =/ XdP.
Q

Below are several important theorems.

o Fatou’s lemma. If {X},},>; is such that P {X,, > 0} = 1 foralln > 1 then

Eliminf X,, <liminfEX,.

e Monotone convergence theorem. If { X}, },>1 is such that P {X,, > 0} = 1 foralln > 1 and X,, 1 X a.s., then

lim EX, = EX.

n—>o0

e Dominated convergence theorem. Let {X,},>; be such that P{X, < Y} = 1foralln > 1, where ¥ €
£1(22, F, P), and suppose X, 2% X Then X,’sand X arein £;(2, ¥, P) and

lim EX, = EX.
n—>oo

e Bounded convergence theorem Let {X}},>; be such that P{X, < b} = 1foralln > 1 and some b < oco. If
X 25 X, then

lim EX, = [EX.

n—o0

Theorem 2.4. For any measurable function f : R — R, we have
Ef(0) = [ f00ap = [ raby.
Q R
On the other hand, if there exists a probability measure P’ on (R, B(R)) such that

/[Rfdrsz/[Rfd[P’

for any measurable function f : R — R4, then P/ = Py.

Proof. The first statement is a change of measure from P to Py = P o X~ !. For the second statement, take f = T4
where A € B(R). O

11



If we only know that the condition in Theorem 2.4 holds only for non-negative, bounded and continuous functions,
instead of all measurable functions, then we can still get Py = [P’. This is becuase we can approximate 1, ) by some

sequence { f }»>1 of such functions. By the monotone convergence theorem,
Px((a.b)) = lim Px(fy) = lim P'(fp) = P'((a.D)).
n—>00 n—>oQ
so Px and P" agree on the p-system € = {(a,b) : —00 < a < b < 00}, so Py and P’ agree on o (€) = B(R).
Example 2.5. Here we show several examples of random variables with infinite or undefined expectation.

o If X € [1, 00) has density f(x) = 1/x? on [1, 0o), then the expectation is
o 1 * 1
[EX:/ x-—dxz/ —dx = 4o0.
1 1

x2 X

e Let X be arandom variable that is equal to 2" with probability 27" (for positive integer 7). Then

o0 o
EX =) 27".2"=) 1= +oc.
n=1 n=1

e Cauchy distribution. The Cauchy distribution has probability density function
1 y?
X;X0,Y) = — | —5——
Jlxixo.y) my [(x—xOF + yz]
where X is the location parameter and y is the scale parameter. The expectation of a Cauchy distribution is
undefined. This is because, for an arbittrary a € R,

/oo xf(x)dxz/a xf(x)dx—l—/ooxf(x)dx,

—0o0 —0o0 a
and the left term is —oo while the right term is +o00, so the mean does not exist at all. Various results in
probability theory about expected values, such as the strong law of large numbers, fail to hold for the Cauchy
distribution. It is like a distribution with fat tails on both sides, and it oscillates between large positive values
and large negative values.

The second raw moment [E X2 does exist and is +o00. Similarly, higher even raw moments exist and are all 400,
but all odd raw moments do not exist. Since the mean does not exist, the variance — which is the second central

moment — is likewise non-existent.

If X is such that E|X|" < oo, then EX" = f[R x"d Py is the n-th moment of X. In case X > 0 a.s., we can obtain
a formula for this:

X %)
X" :/ nx""Ydx :/ 1]{0<x<X}nx"_ldx
0 0

so that
oo o0 o0
EX" =// 1]{0<X<X}nx”_ldxle =/ nx”_I/ 1]{0<x<X}d[de=/ nx"'P{X > x}dx.
QJo 0 Q 0

In particular, if X takes values in N, then

o0
EX = P{X >n}.
n=1
In the lecture Markov’s inequality and Jensen’s inequality (E f(X) > f(EX) for convex f) are also mentioned.
If f: R — Ry is increasing, then for any b € R, one has

T ape < [T e o L 1
[P{X>b}_/b dPy < i f(b)d[PX_f(b)/";f(x)d[PX_f(b)[Ef(X).

12



2.3.1 Laplace transforms and characteristic functions

For a non-negative random variable X, one can define the Laplace transform of X as

Py (1) = Ee™'X = / e *dPx Vi €]0,00). (2)
R+

In terms of the usual definition of Laplace transform for functions (£{ f }(s) = f0°° et f(t)dt), BEq. (2) can be seen

as the Laplace transform of the probability density of X. Or in terms of Laplace transform for measures (L{u}(s) =

Joom €™ k
its expectations is also in [0, 1]. Thus Py € [0, 1] just as Py € [0, 1]. The importance of Laplace transforms comes

St(dt)), Eq. (2) can be seen as the Laplace transform of the probability measure Py. Since e X € [0, 1],

from the fact that they uniquely identify probability measures. Thus, for example, if we know the Laplace transform of
some distribution, then to prove a random variable Y has that distribution too, we may prove that its Laplace transform
has the same form.

Theorem 2.6. If X and Y are non-negative random variables, then

ﬂsx(l)ZUSy(l) Vi>0 <= Py =PFy.

Example 2.7. If X and Y are independent and non-negative random variables, then
Priy(t) = Ee "+ = (Ee™X) (Ee™Y) = Px (1) Py (1).

This formula can help us determine the probability distribution of X + Y. For example, if X ~ G(ap, 8) and

Y ~ G(az, f), then
. _ B \“ « _ B \*
I])X(t)_(ﬁﬂ) [PY(I)_(/SH) '

Using this, the Laplace transform of X + Y is

R R . ,B o) t+on
Px+y (1) = Px(1)Py () = (m) ;

so using Theorem 2.6 we can conclude that X + Y is distributed as G(«1 + o2, B).

Example 2.8. From Eq. (2), the first derivative of Py () is

d ~
—Px(t) = —EXe X

dt
so that
i[@X(t) =—EX.
dt =0
One can show that g
0" — Px (1) = EX".

If X is real-valued instead of non-negative valued, it is convenient to use the characteristic function or Fourier
transform instead of the Laplace transform:

ox (1) = Ee''X = / e dPy = / cos(tx)dPx + i / sin(tx)d Py
R R R
for any ¢ € R. Since |e’"*| = 1 we have |px (t)| < 1. It can be shown that

ox(t) = py(t) VteR <= Py = Py.
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Just as the distribution function
Fx(x) = E[Tix<x]

completely determines the behavior and properties of the probability distribution of the random variable X, the char-
acteristic function
ox (t) = E [¢"X]

also completely determines the behavior and properties of the probability distribution of the random variable X. The
two approaches are equivalent in the sense that knowing one of the functions it is always possible to find the other,
yet they provide different insights for understanding the features of the random variable. However, in particular
cases, there can be differences in whether these functions can be represented as expressions involving simple standard
functions.

If a random variable admits a density function, then the characteristic function is its dual, in the sense that each of
them is a Fourier transform of the other. The characteristic function approach is particularly useful in analysis of linear
combinations of independent random variables: a classical proof of the Central Limit Theorem uses characteristic
functions and Lévy’s continuity theorem. Another important application is to the theory of the decomposability of

random variables.

2.4 Uniform Integrability

Proposition 2.9. A real-valued random variable X isin £1(€2, ¥, P) if and only if

Jim ELX |1k o (X)) = lim [x|d Py = 0. 3)

O Jx:|x|>K

Proof. First note that | X |1 +00)(|X]) < [X|and {|X| > K} | @ as K — oo. If X € &£, then one can apply the
dominated convergence theorem to obtain

lim E[X |1k 1+00)(|X]) = E lim [[X[|1(k 100)(|X])] = 0.
K—o0 K—oo
On the other hand, if the above condition holds true, then one can use the bound
X = [X[Tp0,x1(1X]) + [X |1k +00) | X]) = K + | X[T(k,+00) (| X])

to deduce that
E|X| < K + E[X|T(k,400) (| X]) < 00,

thus proving that X isin &£;. O
The above proposition motivates the definition of uniform integerability.
Definition 2.10. A collection of real-valued random variable € is uniformly integrable if
lim sup E|X|1(& 400 (| X]) = 0 o
K—o00 Xee
e From Proposition 2.9, X € &£, if and only if for any ¢ > 0 there exists K¢ suich that for any K > K
EIX 1Tk, +00) (|1 X]) <&

So another definition of uniform integrability would be: a collection of real-valued random variable € is uni-
formly integrable if for any ¢ > 0O there exists K > 0 such that

sup E|X |1k +o00) (| X ) < &. )
Xet
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e From Eq. (5) we can see that if € is uniformly integrable, then it is also £;-bounded. However, uniform
integrability is a more stringent concept than £;-boundedness. A classical example to illustrate this is the
collection € = {X,};2, of random variables where X, = nl,1/,) on (2,F,P) = ([0,1], B[O, 1], nr).
It is £q-bounded since E|X,| = n - (1/n) = 1 for any X,, but for any K > 0 and n > K one has
E|Xx|1(k,+00)(| Xn|) = n - (1/n) = 1 so that € is not uniformly integrable.

e Here are two sufficient conditions for uniform integrability:

— If € is such that | X| < Z for some integrable random variable Z, then € is uniformly integrable.

— If € is a collection of &£,-bounded random variables for some p > 1, then € is uniformly integrable.

To prove the first statement, note E|X|T(x 1+00)(|X|) < E|Z|1(k,+00)(|Z]) < & for some suitably chosen
K > 0, since Z is integrable. Hence € is uniformly integrable. The second condition means that there exists
M > 0 such that for any X € € one has E|X|? < M. Takev > K > 0. Usingp > 1 = v!™? < K!I"? =
v < K17Py?_ we have

EIX|T(k.400)(IX]) < K'PEIX [P Tk 400) (| X]) < K"PM < &
where the last inequality follows from taking K large enough.

Theorem 2.11. A collection € of random variables is uniformly integrable if and only if it is £; bounded and for any
& > 0 there exists a § > 0 such that for any H € ¥ with P(H) < §, one has

sup E| X |1y < e.
Xet

2.5 Information and Determinability

The o-algebra generated by X, o(X), is the smallest o-algebra with respect to which X is measurable. It is exactly
o(X)={X"1(A): 4 € B(R)}.

Theorem 2.12. Y is measurable with respect to o (X) if and only if there is a deterministic function f : R — R such
that

Y = f(X).
2.6 Independence

Definition 2.13. Let (2, ¥, P) be a probability space. The sub-c-algebras §1,...,%, of ¥ are independent if for
any A; € gi,

P(A; NN Ay) = [ P(4)).
i=1

We can characterize independence in terms of p-systems.

Theorem 2.14. Let §; and §, be sub-o-algebras of ¥ and suppose €; and €, are p-systems that generate §; and 9,
namely
O(Ei)Zgi i=1,2.

Then §; and 9, are independent if and only if €; and €, are, i.e.

[P(Cl NGy = [P(Cl)[P(Cz) VC, € €,Cy € 6.
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Two random variables X; and X, are independent if 0 (X) and o (X>,) are independent. They are independent if
and only if E f1(X1) f2(X2) = E f1(X1)E f2(X>) for all positive measurable functions f; and f5, if and only if their
joint distribution is the product of their marginal distributions, i.e. Fx, x,(x1,x2) = Fx, (x1)Fx,(x2). We can also
extend these (equivalent) definitions to more than two random variables.

If X; and X, are independent, and f; and f, are measurable functions, then Y7 = f1(X;) and Y, = f2(X>)
are independent. This follows from the fact that o(Y;) C o(X;) fori = 1,2, so independence of o(X1) and o(X>3)
implies independence of ¢ (Y1) and o (Y3).

2.7 Convolutions

In probability theory, the probability distribution of the sum of two or more independent random variables is the
convolution of their individual distributions. The term is motivated by the fact that the probability density function of
a sum of independent random variables is the convolution of their corresponding probability density functions.

Let X and Y be independent random variables taking values in R, with Py and Py denoting their respective
probability distributions. Moreover, with H € B8(R) define B = {(x,y) : x + y € H} C R?, one has

[P)p,.y(H)Z[P{X—G—YEH}:/d[PX,Y:/d[PXa’ﬂJY
B B

- / / dPydPy
R J{y:x+yeH}

=/ Py{H — x}dPx.
R

Given two probability measures P; and P, on R, the convolution of P; and [P, is a new probability measure defined

as
[P] * [PZ(H) Z/ [Pl{H —X}d[P2 VH € fB([R)
R

Hence if X and Y are independent then
|Px+y = |PX * [PY = [PY * [Px.

o If Py < Aand Py <« p with p = dPx/dA,q = dPy/du, then
Prar(t) = [ p() [ 4 =i

o If H = (—o0, z] then
Fxiy(@)=P{X+Y <z} = / Fy(z —x)dPyx.
R

o If Py <« ur and Py < ur with respective densities p = dPx/dur, g = dPy/dur, then
+oo pz—x too rz
Fv@ = [ [ adwwir= [ [ g vdpwas
—00 —00 —00 —00

-/ oo [ :oq@ — 0)p()dxdy.

This implies that Py yy < pz and

. _ d[PX_|_ +o0
P =—

Yo\ B B
L (2) = Fx,y (2 —/ q(z — x) p(x)dx.

—0o0

16



Example 2.15. Using the convolution formula, we can determine distributions of sum of common independent random
variables. For example, calculations show that

(1) The sum of two uniformly distributed random variables on [0, 1] with density T} 1] has density z 1o 17(z) + (2—
z)1(1,2](2), the so-called triangular distribution;

(2) The sum of two independent Poisson random variables with parameter A; and A, is another Poisson random

variable with parameter A; + A5;

(3) The sum of two independent Gamma random variables with parameters (o1, 8) and (a2, §) is another Gamma

random variable with parameter (o; + 2, f);

(4) See more examples at: https://en.wikipedia.org/wiki/List_of_convolutions_of_probability_

distributions.

2.8 Borel-Cantelli Lemmas

Kolmogorov’s 0-1 law states that an tail event corresponding to a sequence of independent variables will either almost
surely happen or almost surely not happen; that is, the probability of such an event occurring is zero or one.

Definition 2.16. Let {§,},>1 be a collection of sub-o-algebras of ¥ and 7, = o (U

T=()%

n>1

ﬁm). Then

m>n

is called the fail o-algebra.

A typical case is where {X,, },>1 is a sequence of random variables:

Gy =0(Xn) = Tn=0(Xp. Xn41...) = T =) 0(Xn. Xnp1....).

n>1

Tail events are precisely those events whose occurrence can still be determined if an arbitrarily large but finite initial
segment of the {X, },> are removed. Examples are

i 5 =0}

o0
Z Xn converges} , { lim X, exists} AX, € Bio.}.
n—>o0

n=1
On the other hand, events like {S, € Bio.} and {limsup, S, > b} are not in T since they depend on all the
X1, Xa, ...

Theorem 2.17 (Kolmogorov’s 0-1 law). Let {§,},>1 be a sequence of independent sub-o-algebras of ¥ and 7 the
corresponding tail o-algebra. Then
HeT = P(H)e{0,1}.

The Borel-Cantelli lemmas provide sufficient conditions for almost sure convergence. Recall the following defini-

tions:

Definition 2.18. Let {A4,},>1 be a sequence of events in . We define

limsup 4, = ﬂ U Ap, = {A, occuri.o.},

n—>oo

N>1n>N
liminf 4,, = U ﬂ Ay, = {Ay, occur for all but finitely many n’s}.
n—oo

N>1n>N
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It is easy to check that

limsup A, = {0 € Q: Y T4, (w) = +00 ¢ . (6)

n—o00
n>1

The Borel-Cantelli lemmas provide us sufficient conditions to evaluate [P on such limits of events. From this perepec-
tive, the lemmas can be seen as providing conditions to determine if P(H) = 0 or P(H) = 1 in Kolmogorov’s 0-1
law.

Lemma 2.19 (First Borel-Cantelli lemma). Let {A4,},>1 be a sequence of events in & such that Z P(A4,) < oo.

n>1
Then
P [lim sup An] = 0.
n—>oo
Proof. LetGy = UnzN Ay, so that
li = =1li .
Nl_r)nC>c> Gy ﬂ U Ay h}'IlIl)Solip A,
N>1n>N
Since limsup A,, C Gy, we have
0<P I:limsupAn:| <PGN]=P| (] 4| =D Pl4,].
n—00 n>N n>N
As N — oo, the last term goes to zero, so we are able to conclude the proof. O

In view of Eq. (6), the first Borel-Cantelli lemma says

Z P(4y) <0 = Z T4, <00 almost surely,

n>1 n>1
which is straightforward since this amounts to saying that EN < co = N < oo almost surely, where N = anl 14,.

Theorem 2.20 (Second Borel-Cantelli lemma). If {A,},>1 is a sequence of independent events in ¥ such that

> " P(4,) = oo, then

n>1

n—o0

P [limsup An] =1

Proof. We prove the equivalent statement that P [(lim sup 4,)¢] = P [lim inf A,ﬁ] = 0. Using the fact that | —x < e™*

for any x > 0, we obtain

N+j N+j N+j Nt
”’[ﬂ AZ} = [T P = [T {1 - P(dn)} < e Zn=n A0
n=N n=N n=N

forany j > 1. Since ), P(A,) diverges, we have
N+j N
P ﬂ A; = 'lim P |: ﬂ A2:| < .lim e_Zn=N P(4n) — 0.
n>N 7 La=n S0

Hence

N+j
P [liminf A5] < > [ﬂ A;} =0.

N>1 Ln=N
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Example 2.21. Here we record the example of Riemann zeta function. See the lecture notes for the coin tossing

o0
example. Let £(s) = Z n~* fors > 1. Let X be a random variable taking valued in N = {1,2, ...} such that
n=1

x—S
¢(s)
Let IT denote the set of primes in (1, +00) and for any p € I1 define E, = (J,-;{X = np}. Then
anl n_s o p—s

¢(s)

Note that { £, } e is a collection of independent events, since for any k > 2 and choice of p; # --- # p; we have

P{X =x} = In(x).

IP(Ep) = P_s

P(Ep, NN Ep) =Y P{X =npy-pe} = (p1-+-pe) ™ = P(Ep,) - P(Ep,).

n>1

‘We can then derive

o V5| = TTLEs) = TTa- o

pell pell pell
Thus
1
PIX=1=——=P|(E|=]]a-r™.
é'(S) pell pell
This leads to the Euler formula: 1
()= -
l_[per[(l - p S)

Finally, since
DUPIE) =D p™ < ls) < +oo.
pell pell
the first Borel-Cantelli lemma implies that P{£j i.0.} = 0. On the other hand, since events in {E7} are independent
and
Y PIESI =) (1-p~°) = +oo,
pell pell

the second Borel-Cantelli lemma implies that P{E} i.0.} = 1.

2.9 Convergence
Let {X,}°2, be a sequence of real-valued random variable. Recall the four definitions of convergence:

[ ] Almost sure COnVergenC'e:
[P{lim X,,:X}:l.

n—oo
Using the notion of the limit inferior of a sequence of sets, almost sure convergence can also be defined as
follows:
[P(liminf{a) e Q:|Xy(w) — X(w)] < 8}) =1 forall &>0.
n—>0o0

Almost sure convergence implies convergence in probability (by Fatou’s lemma), and hence implies convergence
in distribution. It is the notion of convergence used in the strong law of large numbers.

There is no topology on the space of random variables such that the almost surely convergent sequences are
exactly the converging sequences with respect to that topology. In particular, there is no metric of almost sure
convergence.
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e Convergence in probability: for any ¢ > 0
lim P{|X, — X|>¢e}=0.
n—oo
Convergence in probability implies convergence in distribution. In the opposite direction, convergence in distri-
bution implies convergence in probability when the limiting random variable X is a constant.
Convergence in probability defines a topology on the space of random variables over a fixed probability space.

Convergence in probability to X implies there exists a sub-sequence {X,, } which almost surely converges to
X.

e Convergence in £p:
lim E|X, — X|? =0.
n—>oQ
Convergence in £, for p > 1, implies convergence in probability (by Markov’s inequality). Furthermore, if
p =g > 1, convergence in £, implies convergence in &£,.

e Convergence in distribution:
lim F,(x) = F(x)
n—->oo
for all x € R at which F is continuous. Namely,

- P{X, < x} — P{X < x} for all continuous points of x > P{X < x}.

According to the portmanteau lemma, this is equivalent to:

E f(X,) — E f(X) for all bounded, continuous functions f’;

E f(X,) — E f(X) for all bounded, Lipschitz functions f;

liminf E f(X,) > E f(X) for all nonnegative, continuous functions f’;
liminf P{X, € G} > P{X € G} for every open set G;

limsup P{X, € F} < P{X € F} for every open set F;

For this reason, convergence in distribution is also referred to as weak convergence.

d
The Lévy’s continuity theorem established that X,, — X if and only if the characteristic functions {¢,} con-
verges pointwise to ¢ of X.

Note that convergence in distribution of {X,} to X and {Y,} to Y does in general not imply convergence in
distribution of {X,, + Y,}to X + Y orof {X,Y,} to XY.

Theorem 2.22 (Continous mapping theorem). Let g be a continuous function. Then

X, Lx = g(Xy) < g(X); (7
X, > X = g(X,) > g(X); ®)
X, 3 X = gX) 3 g(X). )

The chain of implications between the various notions of convergence is summarized as:

£Lp £q
—_— — —_
p>q=>1
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Let’s return back to the Lévy’s continuity theorem. It can transfer the proof of convergence in distribution of
something to convergence of their characteristic functions. We should immediately come up with the idea that we can

use the theorem to prove the Central Limit Theorem, which is a theorem about convergence in distribution.

Theorem 2.23 (Central Limit Theorem). If {X,};2; is a sequence of i.i.d. random variables with EX, = u and

Var(X,) = 02 < oo, then
Sp—nu d

Zy, = — 7
" o/n

where Z ~ N(0, 1).

Proof. For a characteristic function ¢y, we have the property (you can derive this informally by deferentiating the

formula @y (1) = Ee''¥)

P (0) = i*Ex*.
In particular, if X has mean p and variance o2, then
Py (0) =iEX =,  ¢x(0) =i’EX? = —0? — p?
Let ¢ denote the characteristic function of the random variable (X, — i)/o, which has mean 0 and variance 1, so that
¢'0) =0 ¢"(0)=-1
A second order Taylor expansion of ¢ yields

// [2
()[2+ t—l—3+8t

@(t) = (0) + ¢'(0)r +

with lim; 0 (|&;|/1?) = 0. Using the independence of X,,’s, one has
. o Xp—u\ "
Ee''%n = ([Ee” o/ ) = (p(t/vm)".
For n large enough, ¢ //n ~ 0 and so

. t? ?
[Ee”Z” — (1 _ % +81/ﬁ) — e_12/2 asn — +oo.

O

Theorem 2.24 (Law of Large Numbers). If {X,}52 1 is a sequence of pairwise independent and identically distributed
random variables with EX,, = u and Var(X,,) = 02 < oo, then

Xn — 1, Xnﬁ),u’ Xn —> 1.
Proof. Since EX, = p and Var(X,) = 02/n, we have
”Xn_:u”%: [E|Xn_/'L|2 =Var(X,,)—>O asn — oo,

_ 2 _
which entails X, =3 u and a fortiori Xy 2 . To show almost sure convergence, we assume without loss of
generality that X, > 0. Let ny = k2 and by Chebychev’s inequality

ad - 02 1
Z[P{|Xnk wl > e} 5—22—2

k=1
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so by the first Borel-Cantelli lemma
P {|Xnk — | > ai.o.} =0.

This means X,,k it W as k — oco. Hence, there exists Q¢ € ¥ with P(2¢) = 1 such that
)?nk(w) —pn  forallw € Q.

There is a lemma in analysis that says if for a subsequence {x,, } in {x,} such that ng4/nx — r > l ask — oo and

limg 00 Xn, = x, then x/r < liminf, X, <limsup, X, < rx. Using the lemma, we have

w < liminf X, () < limsup X, () < VYo € Qo,
n n

which implies that lim, . X, = @ on Q. O]

See the lecture notes for application of Law of Large Numbers in proving the Weierstrass approximation theorem.

2.10 Conditional Expectations

Let (2, ¥, P) be a probability space, let # be a sub-c-algebra of ¥ and let X be a random variable with finite
expectation. We would like to obtain an representation (approximation) of X in terms of J¢, but X may not be -
measurable. A conditional expectation of X given J, denoted as E(X |F), is any J -measurable random variable that
satisfies

/[E(X|J€)d[P=/ XdP YH e X. (10)
H H

Namely, the values of E(X|#) are “defined” as averages of X on various elements in J¢. Note that Eq. (10) is
equivalent to requiring that EVE(X |#) = EV X for any #-measurable random variable V. The existence of E(X|#)
can be established by the following. First assume X > 0 (for generalization work on X = X — X ™). Note that
pux : A [, XdP for A € ¥ defines a finite measure on (€2, ). Let & be the natural injection from # to #, so that
ix o h = ux|ge is the restriction of uy to # and P o h = P|g is the restriction of P to #. Furthermore, uyx |z is
absolutely continuous with respect to P|z because P|g (H) = Poh(H) = 0 implies that ux (h(H)) = ux|#(H) =
0. Thus, by the Radon-Nikodym theorem, there exists a function duy |5 /d Py : € — R4 such that

d
MXW(H):/ Xd[P:/ [ MX"%}d[PL;g VH e .
H L dPyx

We thus see that the conditional expectation is exactly this Radon-Nikodym derivative.
If X € £,(R2, F, P), we can define the subspace K = £,(2, #, P) and use the theorem on orthogonal projection
to conclude that there exists ¥ € X such that

I X=Y|2= inf | X —=W], and (X-Y,W)=0 VW e X.
WeX
Taking 1 € K forany H € J, we get
0=(X—Y,IIH)=/(X—Y)dIP
H

so that

/Ydl]’:/Xd[P VH € #.
H H

We see that this Y is a version of E(X |#). In this case, the conditional expectation of X given J is the orthogonal
projection of X onto X = £,(2, #, P).
Here are several properties of conditional expectation:
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For # = {@, 2}, the conditional expectation is the constant E X, and for #/ = ¥, the conditional expectation
is X itself.

Since Q € J, we have
/ E(X|H#H) = / XdP = EEX|H)=LEX,
Q Q
which is the law of iterated expectations.
If X is Jf-measurable, then E(X|#) = X almost surely.
Linearity: E(aX + bY |H) = alb(X|H) + bE(Y | H).
Monotonicity: if X < Y almost surely then E(X|#) < E(Y |#) almost surely.
Monotone convergence: if 0 < X, 1 X, then E(X,,|#) T E(X|J) almost surely.

Dominated convergence: If X, 2% X and |X,| < Y for some Y with E|Y| < 400, then E(X,|H) £
E(X|H).

Towering property: if # C &, then E[E[X|H]|§] = E[E[X|F]|H] = E[X|H].
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Part I1

Stochastic Process



3 Martingales

Let (2, #, P) be a fixed probability space in the background, and let T be some time index set.

3.1 Filtrations and Stopping Times

A filtration ¥ = (%;);eT on T is an incresing family of sub-o-algebras of ¥, i.e. ¥; C ¥, whenever t < t’. For a
stochastic process X = (X;)reT, the filtration generated by X is F = (F;)seT With F; = o{X; : s < t}. X is said

to be adapted to ¥ if X; is F;-measurable for each .

Definition 3.1. Let ¥ = (¥;);eT be a filtration on T. A random variable 7' : @ — T U {+o0} is called a stopping
time of ¥ if
{T <t}e ¥ Vit eT. (11)

Be aware that both of the sets {7 < ¢} and ¥; increase in their size as ¢ increases. Eq. (11) is equivalent to
requiring that the process Z = (Z;);eT With Z; = Tyr <, be adapted to ¥, and for T = N this is also equivalent to
requiring that Z = (Z;),eT with Z; = T(7—,) be adapted to ¥ .

Example 3.2. Let T = N, let X = (X,,)nen be a process and consider
T =inf{ne N: X, € A}.
T is called the first entrance to A. It is a stopping time because

{T<n=|J{XeedteF,
k=0

since each set in the union is in %,. The information {T" < n} at each n can be determined by information of

X = (Xpn)neN up to n, instead of having to resort to future information.

Example 3.3 (Counting Process). Let 0 < 77 < T, < --- be some random times taking values in Ry and assume
T, — +o00. Define

o0
Nt = Z ]][O,t] o Tn, t e [R+.
n=1

We imagine that for each w € €2, a sequence of time is determined and N; “expands” the positive real axis to
infinity and counts the occurance time it encountered along the way. If ¥ = (#;),er, is the filtration generated by

N = (N¢)rer 4 then it is obvious that every occurence time T}, is a stopping time of . Indeed,
{T, <t} ={N, >n} e VtelR;.

Another stopping time is 7 = inf{t > a : N; = N;_,}, namely the first time that an interval of length a passed

without an arrival.

Let ¥ be a filtration on T and let T be a stopping time of it. We define'

Fr={HeH HN{T <t}eF VteT} (12)

ITo tackle the case that T'(w) may be +oo for some w, we define Foo as 0 (U, e Fr), the o-algebra generated by the union of all the F7;.
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as the past until T. It is a sub-c-algebra of J on Q2. Note that if T = ¢y is a fixed constant, then {7 <t} = {ty <t}
is @ when ¢ < fg and it is  when ¢ > 9. Remembering F;, C ¥; for allt > o, we see that 7 = ¥, in this case.
Also note that {T' < s} € F7 foreach s > 0, because {T" < s} N{T <t} ={T < s At} € F; for any ¢. This shows
that T is ¥7-measurable.

If a positive random variable V is $r-measurable, then {V > s} € Fr for any s > 0. By Eq. (12), this means
WV>sin{T <t} = {Vlr<y > s} € F, forallt € T. In other words, the random variable V 1;7 <) should be
F;-measurable for any ¢+ € T. This is the content of the following theorem in the book.

Theorem 3.4. A random variable V' belongs to Fr if and only if
Viir<iy € 3
for every t € T. In particular, if T = N, then the condition is equivalent to requiring that
Vigren € Fu Vn € N.

In the book, the author identifies a filtration ¥ = (&;) with the collection of all stochastic processes X such that

1. X = (X;)isadaptedto ¥ = (F7);

2. t — X;(w) is right-continuous for each w € Q.

Then we can identify F7 as the set of values (random variables) of all processes X in ¥ at time T, i.e. 7 = {X71 :
X e F}.

Theorem 3.5. Let S and T be stopping times of . Then

1. SAT and S v T are stopping times of 7 ;
2. if § < T then 5 C Fr;
3. in gengeral, Fs 7 = Fs N Fr;

4. if V € Fg then the following are in Fgar:
Vis<tys Vigs=r;, Vigs<ry-

Proof. You shoule be able to work out the proof yourself, following items 1, 2, 4 and finally 3. Or see page 177 in the
book. O

Definition 3.6. We define E 7 as the conditional expectation operator based on the o-algebra ¥7,1i.e. E7 := E(-|Fr).
Borrowing this notation, we use [E; to mean E(:|%;), the conditional expectation given the o-algebra ¥;.
Theorem 3.7. The following hold for all positive random variables X, Y, Z and for all stopping times S and 7 of ¥ :

1. Y =ErXifandonlyif Y € Fr and EVX = EVY for every positive V € Fr.
2. EEr X = EX.

3. EsEr X = EsarX.

4. Er(X+YZ)=X+YErZifX,Y € ¥r.
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3.2 Martingales

Definition 3.8. A real-valued stochastic process X = (X;);eT is called an ¥ -submartingale if X is adapted to ¥,
E|X;| < 4o0 for each ¢, and
Es(X:—X5) =0 vVt > s.

It is an ¥ -supermartingale if
Es(X;—X5) <O vVt > s.

It is an & -martingale if
Es(X;—X5) =0 vVt >s.

Several remarks:
e Let X be an ¥ -submartingale. Foru > ¢ > s,
Es(Xu — X¢) = EsE: (Xy — X;) = Es0 =0,
so that any remote future increment is also positive.

e When T = N, the condition for martingale is equivalent to

[En(Xn+1 — Xn) =0, Vn € N.
e In fact, X is a martingale if EX; = E X for all times ¢.

Example 3.9. Here are two basic examples of martingales.

1. Let X1, X5, ... be independent random variables with mean 0, and put So = 0. Then S,, = So+ X1+ -+ X,
is a martingale adapted to the filtration generated by itself, since E,(Sy+1 — Sy) = B4, Xn+1 = EXpy1 = 0.

2. Similarly, if Ry, R»,... are independent random variables all with mean 1 and finite variance, then M, =
MyR{ R, --- R, with My = 1 is a martingale adapted to the filtration generated by itself, since £, M, +; =
[EnMan+1 = Mn[Ean+1 = Mn[ERn+1 = M,.

Theorem 3.10. Let Z be an integrable random variable. Define
X t = [E t Z
fort € T. Then X = (X;);eT is an ¥ -martingale and is uniformly integrable.

Proof. Adaptedness is immediate, each X is integrable, and the martingale property is Es X; = EsE,Z = EsZ = X
for s < t. For uniform integrability, the proof in the book used a proposition that says € is uniformly integrable if and
only if supy e E f(]X|) < oo for some increasing convex function such that limy_,~, f(x)/x = oo (page 74). But it
should be intuitively clear that {X; };eT is uniformly integrable. O

Wiener process and Poisson process are two processes that have stationary and independent increments.

Definition 3.11. Put Wy = 0. The continuous process W = (W;);er + is called a Wiener process with respect to F

if it is adapted to ¥ and
1

Es f (Wt — Ws) = N

/ Flx)e™ /2 dx
R

for all s, € R4+ and all positive Borel functions on R.
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Theorem 3.12. W is Wiener with respect to ¥ if and only if it is continuous and
1. W is an ¥ -martingale, and
2. Y = (W2 —t)ier, is an ¥ -martingale.

Proof of neccessity. If W is Wiener, then each W; is normal with mean 0 and variance ¢. For s < , the increment
W; — Wy is independent of F; and so Ez(W; — Wy) = E(W; — Ws) = 0. To show the second process is a martingale?,
we note that

Y, =Y = (W — Wy)? + 2Wo(W; — W) — (1 —5)

so that
Es(Y; — Yy) = E(W; — Wy)® + 2W,E(W, — W) — (t —s) = (t —s) — (t — ) = 0.

O

Theorem 3.12 signifies ubiquity of normal distribution: if a collection of continuous i.i.d. random variables
{X:¢}er + is such that they have mean EX; = 0 and variance EX tz = ¢ for all ¢, then it must have a normal dis-
tribution, i.e. it is a Wiener process.

Proposition 3.13. W is a Wiener process with respect to ¥ if and only if, for any r € R,
1,
M; = exp rW,—Ert, teRt

is an ¥ -martingale®.

Proof. First recall that, for a normal random variable X ~ N(u,o?), its moment-generating function is m(r) =
1 .. 1 . .
Ee'™ = e”’“+§"2’2, so for Wy itis m(r) = e2™t IE W is Wiener, then for s < ¢

I]':s [%} = [Es exp {r(Wt_WS)_%rz(t_s)} =1 (13)

so that EgM, = Eg | M. MS] = ME; [%ﬁ] = M; -1 = M. This proves M = (M;);er, is an F -martingale.
Conversely, if M is an ¥ -martingale, then E;(M;/M;) = 1, which means Eq. (13) holds, or equivalently

©

Esexp{r(Ws+: — Ws)} = e,
This proves that W = (W;);er_. is Wiener. O

A counting process N = (N¢)ser,. is a process with state space (N, 2N) whose every path t — N, () starts from
No(w) = 0, is increasing and right-continuous, and increases by jumps of size one only. Therefore N, is the number
of jumps in the interval (0, ¢].

Definition 3.14. The counting process N is said to be a Poisson process with rate ¢ with respect to ¥ if it is adapted
to ¥ and

o0 k
Eof(Nosi — Ny = Y [(”) e—“] - F k) (14)

k!
k=0

for all s, € R4 and all positive functions f on N.

2The proof is from the book. However, it is easy to see that Eg W,2 = I’EWI2 = ¢, so if we subtract the variance ¢ we get a martingale.
E(WW2—1t)=0= W forallt € Ry.
3 M is the moment generating function of Wy, e” Wi times its reciprocal.
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With f(k) = k, we get the mean of Nyy; — Ny from Eq. (14): itis E(N;4+s — Ng) = Es(Nyys — Ns) = ct. Each
N; is Poisson distributed with mean c¢. It turns out that

Theorem 3.15. A counting process N is a Poisson process with rate ¢ if and only if (N; —ct)er, is an F -martingale.

The theorem says, if a (discrete) counting process {N; }ser,. is such that they are independent, and the expectation
EN; = ct grows linearly in ¢ with a single rate ¢, then only Poisson distribution can be used to describe their
probability laws.

In fact, if N is a Poisson process, then we can substitute s with stopping time S:

o k
(ct)® _
Esf(Ns4: — Ns)lis<oo} = Y _ [ ¢ et
k=0

} - k)15 <00} (15)

Eq. (15) is called strong Markov property for the Poisson process.

Example 3.16. Let S be the first time of an interval of length a passes without a jump, that is
S = lnf{t >a: Nt = Nt—a}-

Let T be the time of first jump after S. Note that the interval that includes S has length ¢ 4+ (T — §), and for a large,
the raw intuition expects 7 — S to be small. Instead, noting that {7 — S > ¢} = {Ns4+; — Ng = 0}, we see that T — S
is independent of s and has the same exponential distribution as if S is a jump time.

3.3 Martingale Transformation and Maxima
Definition 3.17. A process X = (X,)neN is said to be F -predictable if X1, € %, foreveryn € N.

Theorem 3.18. Let X be adapted and integrable. Then it can be decomposed as
Xn = Xo+ My + An, neN, (16)

where M is a martingale with My = 0, and A is predictable with A9 = 0. This decomposition is unique up to
equivalence. In particular, if X is a submartingale, then A is increasing, and if X is a supermartingale, A is decreasing.

Proof. The way we achieve Eq. (16) is to define My = A¢ = 0 and define M and A through their increments:
An+1 —An = [En(Xn-H - Xn), Mn+l -M, = (Xn+1 - Xn) - (An+1 - An)

for eachn € N, so that X,,+1 — X, = (Mn+1 — Mn) + (An+1 — An) = (Mn+1 + An+1) — (Mn + An) = X, =
Xo+ M, + A, 0

Let M = (M,) and F = (F},) be real-valued stochastic processes and define
Xn=Fo-Mo+ Fy-(My—Mo)+ -+ F,-(My — My—1), neN.
The X = (X,) is called the integral of F with respect to M, or the transform of M by F, and we write
X = / FdM.

If F = 1, then X, is just M,,. From another perspective, F is like a (random) function on N, and M is like a (random)
(signed) measure on N, with mass (M,, — M,_;) at n. Thus we can also write

X, =/ FdM.
[0,n]
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Theorem 3.19. Let F be a bounded predictable process and let X = [ FdM. If M is a martingale, then so is X. If
M is a submartingale and F is positive, then X is a submartingale.

Proof. X is adapted to ¥ because F' and M are. Since F is bounded, say by b > 0, | X,,| < b - (|Mo| + --- + | M, —
M,,_1]), which is integrable, so X is integrable. Finally,

En(Xnt1— Xn) = Fpt1 - En(Mp41 — My) = Fry1-0=0

so that X = (X},) is a martingale. O

Example 3.20. Let S and T be stopping times of # with S < T (they take values in N). Let V € Fg. Then the

following processes

Vi, Vises s, o)

are all predictable processes. Start with the second one:

o Let X, =V - I(s,001(n) =V - lis<ny(w). If we know the value of X,,, plus information of the stopping time
(recall {S < n} € ¥,) at time n, then can know the value of X, 11 = V - ligcpyy(@) = V - lis<py(w), ie.
X,uy1 € F,. Note that {S < n 4+ 1} = {S < n} because S can only take integer values. Thus, V 1(s ] is
predictable.

e From S < T, we have ¥g C ¥, sothat V € F7 also. Changing S to T, we see V (7, is also predictable.
e Their difference V (5,00 — V1(7,00] = V T(s,7] is also predictable.

e Taking V = 1 shows that 1(g 7] is predictable.

e Taking T" = 0o shows 1(g o is predictable.

e Finally 1jp,s1 = 1 — 1(s,00] is predictable. Alterntatively, ljo, s1(n + 1) = Vsspnt13 = lis<ntiye = lis<mic
and since {S < n} € ¥, we have {§ <n}° € %, also.

Definition 3.21. Let M = (M,,) be a process. Let T € N be a random time. Then the process X defined by

My(@)  ifn < T(w),
Xn(@) = Myn1(0)(@) = .
M7y (@) ifn>T(w)

is called the process M stopped at T'.

Observe that X is a “transform” of M, and indeed we can express X as the integral

X=/MMﬂM= dM
[0.7]

so that

X Z[ dM = dM = Munr.
[0,n]N[0,T] [0,nAT]

Thus, from Theorem 3.19, if M is a martingale, then so is the martingale stopped at T'.
Theorem 3.22 (Doob’s stopping theorem). Let M be adapted to & . The following are equivalent:

1. M is a submartingale;

2. For every pair of bounded stopping time S < 7', Ms and M are integrable and

Es(Mr — Ms) = 0.
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3. For every pair of bounded stopping time S < T, Mg and Mt are integrable and

E(Mr — Ms) > 0.

We now want to define the notion of crossings of an interval (a,b) € R by some process M. Put Ty = —1 for
convenience and for each k > 1 define

Sy =inf{n > Ty : M,, < a}, Ty = inf{n > Sy : M,, > b},
the downcrossing times and upcrossing times. Then
[e )
Un(a.b) = > Vom © Te = Tom(T1) + Tou)(T2) + -
k=1
is the number of upcrossings of (a, b) during [0, n]. The following inequality will be used to prove the martingale

convergence theorem.

Proposition 3.23. If M is a submartingale, then
(b —a)EU,(a.b) < E[(My —a)" — (Mo —a)*]

Proof. An upcrossing of (a, b) by M is the same as an upcrossing of (0,5 — a) by (M — a)™, and the later us again
a submartingale, so we may assume a = 0 and M > 0. Let F,, = Ziil ﬂ(sk,Tk](n) forn > 1 and put Fy = 0.
Note F,, € {0, 1} with F,, = 1if n € (Sg, Tx] for some particular k and O otherwise. Let X = [ FdM. Since F is
predictable, we have Fi; € F%, so

Ex (Xk+1 — Xi) = Bk Fret1 - (Mi+1 — Mi) = Frep1Exg (M1 — My) < Ex (Mic1 — My).
Taking expectations on bothe side and summing over k:
[E(Xn - XO) = [E(Mn - MO)-

On the other hand, bU, (0, b) < X, — Xo. The justification is to view M = (M,,) as stock price, and so X, is like the
total profit if you buy one share when M hits 0 and sell the share when it goes above b during [0, n], which is larger

than b times total number of upcrossings in the interval [0, n]. Thus
b[EUn(Oa b) = [E(Xn - XO) = [E(Mn - MO)-
O

The following inequalities on maxima and minima should be more or less obvious. Let S = {maxg<, My >
b} C Q. Note P(S) = Elg and the inequality says b - P(S) = Eb - 1s < EM, - Is. The submartingale {M,} has a
tendency to increase, so on the domain S, M,, should be close to or larger than b, i.e. b < [E M, over that domain, and

this is exactly what the inequality says.
Theorem 3.24. Let M = (M,) be a process adapted to ¥ . Suppose M is a submartingale, then for b > 0,

bIP{max Mk = b} = [EMn]]{max M >b} =< [EM;_7
k=<n k<n -

b[P{gcnin My < =b} < EMyTimin My>—by — EMo < EM,S — EM,.
<n k<n
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Proof. Define the stopping times
T=inf{n>0: M, >b}, S=inf{n>0:M, <-b},

so that
{max My > b} ={T <n}, %min My < —b% ={S <n}.

k<n k<n

Note that on {T" < n}, we have b < M1 = M Ay, SO

blir<ny < Mranlir<ny < (E7anMu) i <ny = Eran MpliT<py,

where the second inequality is Doob’s submartingale inequality and the last equality is because {T < n} € Fran.
Taking expectations on both sides yields the desired inequality. Note that since M, < M, and Vimaxg < M=} < 1,
the second inequality E My, Tgmax, _, m>p3 < EM,] is obvious.

On {S < n}, we have Mg < :b, so that

Mgy = MS]]{Sgn} + Mnﬂ{S>n} =< _bﬂ{Sgn} + Mnﬂ{S>n}-

Taking expectations on both side and noting that E M, < EMg, by Doob’s martingale inequality, we get the desired
result. O

If M is a martingale, then|M |? is a submartingale for p € [1,00). Apply the above theorem to |M | we get a
generalization of Kolmogorov’s inequality:

Corollary 3.25. Let M be a martingale in £, for some p € [1, oo). Then, for b > 0,
bPP {max|Mk| > b} < E|M,|*.

k<n

Theorem 3.26. Let M be a martingale in &£, for some p > 1, with 1/p 4+ 1/q = 1. Then
Emax |[M|? < gPE|M,|?.
k<n

Proof. Fix n and introduce Z = maxg <, |My|. We want to show

EZ? < gPE|M,|?.
We have

V4 0o
VA / pxPldx = / pxP 2 x 175 ydx
0 0
and by Theorem 3.24,
Exlyz>xy < E[My|- liz>x,
SO

o0
EZ? < [E|Mn|/ pxP 275 ndx.
0

Note that

oo V4 p— 1 P Z
f pxP Uz ndx = / pxP2dx = —/ (p— DxP2dx = qZP7",
0 - o p—1 r—1Jo
sowith p—1=p/q,
1/p 1/q
EZP < E|MylgZ?" < q(tE|Mn|P) ([Ezp)

from Holder’s inequality. Solving for EZ? we have

1-1/q 1/p 1/p
([EZP) = ([EZ”) < q([E|M,,|1’) = [EZP <qPE|M,|”.

32


https://en.wikipedia.org/wiki/Kolmogorov%27s_inequality
https://en.wikipedia.org/wiki/H%C3%B6lder%27s_inequality

3.4 Martingale Convergence
Theorem 3.27 (Martingale convergence theorem). Let X = {X,,}° , be a submartingale. If

supEX," < oo, (17
n

then X = {X,};2, converges almost surely to an integrable random variable.

Proof. First note that
EX, < E|X,| =2EX, —EX, <2EX,;} —EX, (18)

so Eq. (17) is equivalent to requiring that X = {X,} be &£; bounded, i.e. sup, E|X,| < oco.

If, for an outcome w, the sequence { X, (w)} does not have a limit, then we can pick two rationals lim inf X, (w) <
a < b < limsup X, (w) such that the sequence upcross (a, b) infinitely often, i.e. U(a,b) = oo where U(a,b) =
lim,,— 00 Uy (a, b).Thus, to show lim X, exists almost surely, we can show for any pair of rationals with a < b, one
has U(a, b) < oo almost surely.

Fix a < b. By Proposition 3.23,

(b—a)EU(a,b) = (b —a) lim EUy(a,b) <supE(X, —a)" <supEX, + |a| < o0
n—oo

where we used the monotone convergence theorem in the first equality. Thus, U(a, b) < oo almost surely. It follows

that Xoo = lim X, exists almost surely. By Fatou’s lemma
n—>o0
E|Xoo| = Eliminf|X,| < liminf E|X,| < 2supEX," —EXy < 0o
n
80 X0 18 integrable. O

Theorem 3.28. Let X be a submartingale. Then X converges almost surely and in £ if and only if it is uniformly
integrable. Moreover, setting Xoo = lim X,, extends X to a submartingale X = (X ) nei-

Proof. Theorem II1.4.6. (p106) in the book says a sequence { X} of random variables converges in &£ if and only if
it converges in probability and is uniformly integrable. So if X converges almost surely and in &£, then it is uniformly
integrable. On the other hand, if it is uniformly integrable, then it is £;-bounded, so we can use Theorem 3.27 to
conclude that it converges almost surely, and also in &£; by Theorem I11.4.6. again. O

Theorem 3.29. A process M = (My)nen is a uniformly integrable martingale if and only if
M, =E,Z, nelN (19)
for some integrable random variable Z. If so, it converges almost surely and in &£ to the integrable random variable
My = EocZ (20)
and M = (M,,) nci 18 again a uniformly integrable martingale.

Proof. If M has the form Eq. (19), then it is uniformly integrable by Theorem 3.10.

If M is uniformly integrable, then Theorem 3.28 shows it converges almost surely and in &£ to some integrable
random variable Mo, and that M = (M), ey is again a martingale. Define Z = Mo, so that by the martingale
property for M one has M,, = E, M. O

Corollary 3.30. For every integrable random variable Z,
E,Z - ExZ

almost surely and in £;.
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We can use the above corollary to give a proof to Kolmogorov’s 0-1 law.

Theorem 3.31 (Kolmogorov’s 0-1 law). Let {§,},>1 be a sequence of independent sub-c-algebras of ¥ and T the
corresponding tail o-algebra. Then
HeT = P(H)e{0,1}.

Proof. By Corollary 3.30, for every event H,
E,lg — Exoly

almost surely. When H € T, since T is independent of §,, we have E,1g = Elg = P(H). On the other hand,
since §,, C 9§ for every n, we have T C G (see Definition 2.16), which implies that E, 1z = 1g. This implies
that P(H) is either O or 1. O
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4 Poisson Random Measures

Throughout, (E, &) is a measurable space that is often (R, B(R)). (2, #, P) is the probability space in the back-
ground.

4.1 Random Measures

Definition 4.1. A random measure is a measure-valued random variable. Specifically, M : Q x & — R is a random
measure if for every left coordinate it is a measure, and for every right coordinate it is a mearuable function (i.e. a
real-valued random variable).

We can also view a random measure as a function M : @ — {u : u : & — Ry}, from Q to the space of all
measures on (E, §). It is a random counting measure if, for almost every w € Q, M,, is purely atomic and its every
atom has weight one. Often, we also work with random probability measures, for example in Bayesian statistics.

Here are some notations regarding random measures. For f € &,

Mof = [ fim,
is a (positive) random variable as a function of w € €2, and
w(A) =EMy,(A) = /Q My, (A)dP
defines a measure on (E, &), called the mean of M, i.e. w = EM. By Fubini’s theorem one has uf = EMf,V f €
&Ey.

Proposition 4.2. The probability law of a random measure M is completely determined by the Laplace functional
¢ 1 &+ — [0, 1] defined by
o(f)=Ee ™/ fee,.

Proposition 4.3. If ( f,) C & is increasing to f, then

lim Ee M/ = fe~Mf,

n—>00
Proof. If f, 1 f,then M, f, 1+ M,, ffor each w € © by the monotone convergence theorem, and so e ™Mo /n 4

e Mo for each w € Q. The desired conclusion follows from the bounded convergence theorem. O

Proposition 4.4. Two random measures M and N are independent if and only if

Ee~(M/+Ng) <[Ee’Mf) (EeN8), fgety.

Example 4.5. Let X = {X;}?, be an independency of random variables taking values in R” according to some

common distribution A. Let K be independent of X and have Poisson distribution with mean c. Then

K
M(A) =) 14(X;). A€ B(R"

i=1
defines a random measure, i.e. the measure of A is the count of how much X;’s fall in A. The integral of an f : R” —
R+ with respect to M is

K 00
Mf =Y f(X) =) f(X)lx=i)-

i=1 i=1
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The mean of the random variable M f is

EMf =) Ef(X)Elg=iy = A)EK =c- (L),

i=1
namely, ¢ times the value E f(X;). To compute the Laplace functional of M, note

K
eMSf _ XK rx) [Te /0.

i=1

Because K and {X;} are independent, we can first take the expectation of the terms in the product, to get
([Eeff(xl)) ([Eeffo@)) ([Eeff(xm> = e e ) (he™) = (e NHK.

Then we take the expectation with respect to K, to get

x k
-Mf _ VK = N e (he= K
Ee =EAe /)" = E k!e (Ae™/)
k=0
)L f"
2 : (C € ) — ec/le e €

where we recall A(1) = [ dA = 1.

4.2 Poisson Random Measures

First a small note: we extend the definition of Poisson distribution to mean ¢ = O and ¢ = c0. Forc = 0, X =0
almost surely and for ¢ = 400, X = 400 almost surely. Recall if X; and X, are independent Poisson wih mean ¢,
and ¢,, then X1 + X is Poisson with mean ¢ + ¢5.

Definition 4.6. Let (£, &) be a measureable space and let v be a measure on it. A random measure N on (E, €) is
said to be Poisson with mean v if

1. N(A) is Poisson distributed with mean v(A) for every A € &;
2. if Ay, ..., Ay are disjoint, then N(A;), ..., N(A,) are independent.

As we can see, the random measure in Example 4.5 is exactly a Poisson random measure with mean cA. For a
discrete space like (N, 2'”), we can define a Poisson random measure as followes. Let v be some measure on N and
for each n € N let W, be a Poisson distributed random variable with mean v({n}). Assume {W,} is an independency
and define

NA) =) Wy, ACN.
neA
This is a Poisson random measure on N with mean v.

Let’s now do some small computations for a Poisson random measure N on R? with mean v = ¢ - ..

1. What is the probability distribution of the distance R from the origin to the nearest atom? R > r if and only if
N(B,) = 0, where B, is the closed disk centered at the origin. Thus

P{R > r} = P{N(B,) =0} = VB = p=¢7r* ;¢ R,.
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2. Imagine atoms as centers of small disks of radius a. What is the distribution of the distance V' from the origin
to the nearest disk along the positive x-axis? We have V > x if and only if N(Dyx) = 0 where D, =
[0, x] x [—a, a]. Thus

P{V > x} = P{N(Dy) = 0} = ¢V (Px) = g72ax,

It can be calculated that for f € &, one has ENf = vf and VarNf = v(f?2). The first one on mean is clear,
and for the one on variance, we prove as follows:

1. For f = aly, wehave Nf = aN(A) = VarNf = Var[aN(A)] = a>Var[N(A)] = a?v(A) = v(aly)>.

2. For simple function f = Z?zl aily, = Z:’zl fi where Ay, ..., A, are disjoint, we have Nf = a1 N(A;) +
-+ +a,N(Ay) so

VarNf = Var[a; N(A1) + -+ + an N(4,)]
atfVar[N(A1)] + -+ + a2 Var[N(4,)]
a%v(Al) 4+ 4 a,zlv(An)

=v(@ily, +---+aly,).

The last term is equal to f2, because fori # j, A; N A; = @so fif; =0= f2= f2+--+ f2

3. For f € &, there exists a sequence of simple functions (f,) C &4 such that f, 1 f. Using continuity of
f = VarNf,

VarNf = Var¥ (Jim f) = Jim VarNfy = lim vfD) = v (Jim £7) = (/).
Theorem 4.7. N is Poisson with mean v if and only if
p(f)=Ee™M =0 feg,. 1)

Proof. Suppose N is Poisson with mean v. For f = al4 with v(A4) < oo, we have Nf = a - N(A) where N(A) has

Poisson distribution with mean v(A), so

00 k
Fo~Nf — Z VA" v | -ak

= ev(A)e ae_U(A)

— VA=)

=exp{—vl4(l —e %)} < integral of 14 times a constant

= exp { v(l — “]“)} < integral of the function (1 — e~%4)

_ e—v(l—e_f).

The result remains true even when v(A4) = +oo. Next, if f € &4 is simple, say /' = Y/ aila, = > ;—; fi where

37



Ay, ..., Ay are disjoint, then Nf1, ..., Nf, are independent by definition of Poisson random measures, so

Fe N/ = ﬁ Fe Ni = exp {—v(l — e_fl)} ---exp {—v(l — e_f”)}

i=1

£

= exp {—v <1 — ¢ Zi= f’)}

e v (1-e 7)),

The two terms in red are equal because, when x ¢ A;U---UA,,wehave f; =0 Vi =1,...,ns0 efi=1 Vi=
L....n=Y"_e/i=n=n-3"_e /i =0and for the second term itis | —e® = 1 — 1 = O also. If x € 4;
for some j, then f; = 1and f; = 0 fori # j,soZ:’ZIe’f" =m-D+f =sn—[n-—)4+efil=1—e7,
which agrees with the second term in this case.

Finally, let f € &4 be arbitrary. Let (f,) C &4+ be a sequence of simple functions such that f, 1 f. By
Proposition 4.3,
e—N lim fy —v(l—e— 1)

nsoo’™ = lim Ee ™" = lim e )
n—o0 n—o0

Fe ™M =F

Asn — 00, 1 — e/ increases to 1 — e/, and v(1 — e~ /7) increases to v(1 — e~/ due to monotone convergence

theorem. Thus limy,_,o, e (1€~ = g=v(1—e7), O

The following proposition is quite obvious. Since N has mean v, if v(1g) = v(E) = 400 then N(1g) =
N(E) = +o0also. If v(E) < oo then N(E) < oo also.

Proposition 4.8. Let N be a Poisson random measure on (E, &) with mean v. Let f € &.

1. If v(f A1) = 400, then Nf = 400 almost surely.

2. Ifv(f A1) < oo, then Nf < oo almost surely.
Theorem 4.9. Let N be a Poisson random measure on (E, &) with mean v and suppose v is X-finite. Then N is a
random counting measure if and only if v is diffuse.
4.3 Transformations
We remind the reader what is a transition kernel: let (S, §), (T, 7) be two measurable spaces. A function
K:SXT —[0,4+00]
is called a transition kernel if

1. fix the left coordinate, you get a measure on (7, 7);

2. fix the right coordinate, you get a measurable function.

A transition probability kernel is a transition kernel such that «(s,-) € [0, 1] is a probability measure on 7" for every
seSs.

Theorem 4.10. Let X = {X; : i € I} be a collection of random variables that form a Poisson random measure N
with mean v on (E, &), and let Y = {Y; : i € I} be a collection of random variables taking values in (F, ¥). Let
Q : Ex ¥ — [0,1] be a transition probability kernel from (E, §) to (F, ¥ ). If given X, the variables {Y;} are

conditionally independent and have the respective distribution Q(Xj, -), then
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1. Y forms a Poisson random measure on (F, ) with mean vQ;

2. (X,Y) forms a Poisson random measure on (E x F, & ® ¥) with mean v x Q.

We remind the reader that v x Q is the product measure on E x F,i.e. (v x Q)(dx,dy) = v(dx)- Q(x,dy), and
vQ is the marginal of v x Q on F,ie. WQ)(dy) = [ v(dx)Q(x,dy).

Proof. Let M be the random measure formed by (X, Y) on E x F. The random measure formed by Y on F is the
image of M under h(x, y) = y, so we shall only prove 2. We prove by showing that the Laplace functional of M has
the form of Eq. (21). For positive fin& ® ¥, Mf =) ;c; f(X;.Y;) so

e Mf — l_[e_f(Xth).
iel
Since Y;’s are conditionally independent given X, the conditional expectation of e™™/ given X = {X;} is
E [e—Mf|X] _ 1—[/ XD O (X;, dy) = [[e# XD = e,
ier ' F iel
where g(x) is defined by
g :/ e~ TEN O(x. dy).
F

Now take the expectation to get
Ee ™M/ = Ee™N¢ = ¢7v(1—¢7%)

where we used Theorem 4.7 for the Poisson random measure N on E. Now

v(l—e‘g)=/ v(dx) (1—/ Q(x,dy)e_f(x’y))
E F
=/EV(dx) (/F Q(x,dy)—/FQ(x,dy)e—fw))

=/Ev(dx)[F Q(x,dy) (1—e_f(x’y)>
=xQ)(1—e).

So we see that
Fe M/ — ,~vxQ)(1—e/)

This completes the proof that M is a Poisson random measure on E x F with mean v x Q. O

Corollary 4.11. If X forms a Poisson random measure on E with mean v and Y is independent of X and is an
independency of variables with distribution = on (F, ¥), then (X,Y) forms a Poisson random measure on (E X
F,& ® ¥) with mean v x 7.

Proof. Take Q(x,-) to be 7 () in Theorem 4.10. O

Example 4.12 (Compound Poisson Process). Let’s do some computation of a model of customer arrival. Suppose
the arrival time {7;}7, of customers at a store form a Poisson random measure N on Ry with intencity c, i.e. the
mean measure is v = ¢ - ur. Each customer spends, independently of each other, a random amount of money Y; at
the store which is distributed as 7, with mean m and variance 2. In other words, {¥;} and {T;} are independent and
furthermore {Y;} is an independency. We are interested in knowing the distribution of

o
Z =Y Yiloq (T,
i=1
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the total amount of purchase before time . From the preceding corollary, {(7;, Y;)}72, forms a Poisson random

measure M on Ry x Ry with mean v x w. The random measure puts weight 1 on each of the point (77, ¥;) in the
space IRﬁ_. This means, for A C [Rz+ measurable, one has

M(A) = 14(T3. Vo).
i=1

the count of those (73, Y;) falling into A, and M(A) has Poisson distribution with mean (v x 7)(A4). In particular, if
A = [0,1] x B, then M (A) is the count of those in {(T;, ¥;)}72, who fall before time ¢ and at the same time have sizes
in B. It is Poisson distributed and its mean is ct - w(B). For f : Ry x Ry — R4 measurable,

Mf =Y f(Ti.Y)).

i=1

For f(x,y) = Tjo, -y, we have f(T;,Y;) = Tjo,q(T;) - Y, so that

o0
Mf =M (lps-y) = ZYi“(o,t] (T3),

i=1

which is exactly Z;. Thus, we can represent Z; as
Zo= [ oMy = by
[R+><[R+

with f = Tjg ;] - . Some information on distribution of Z;:

EZ: = (v x1)(f) = v (o) - 7(y) = ct-m,
VarZ, = (v x 1) (f?) = v (Ipo.n) - 7(y?) = et - (m* + 0%),

Ee "%t = Ee M) = exp {—cl (1—=e)r(dy)
R+

The process Z = (Z¢)teR + is an example of a compound Poisson Process.

4.4 Additive Random Measures and Lévy Processes

Definition 4.13. Let M be a random measure on E. It is said to be additive if M(A1), ..., M(A,) are independent
for all choices of finitely many disjoint sets Ay,..., A, in &.

Deterministic measures and Poisson random measures are of course additive. Below are two more.

1. (Fixed atoms, random weights) If D C E is countable and {W, : x € D} is an independency of positive random
variables, then the random measure defined by

K(A4) =) Wila(x)

xeD
is an additive random measure.

2. (Random atoms, fixed weights) Let N be a Poisson random measure on £ x Ry with mean v. Define

L(4) = /A aN(x.dy) = Nl ),
xRy
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Then L is an additive random measure on E. The Laplace transform for L(A) is

Ee "L — exp {_/ (1 —e)v(dx,dy)
AX[R+

by using Theorem 4.7.

Let o be a deterministic measure and suppose K and L are independent. Then M = o + K + L is an additive measure.

Conversely, it can be shown that the preceding is, basically, the general form of an additive random measure.

Definition 4.14. Let S = (S;):er,. be an increasing and right-continuous stochastic process with state space R and

So = 0. Itis said to be an increasing Lévy process (or subordinator) if it has stationary and independent increments.

Given an additive random measure M on R4 , putting S; = M([0,¢]) yields an increasing right-continuous

process. Once we assure that S; < oo almost surely for all ¢, independence of increments follows from the additivity

of M. Stationarity of increments is achieved by making sure that the mean measure is chosen appropriately and there

be no fixed atoms and the deterministic measure o be a constant multiple of the Lebesgue measure. In other words, the

following proposition is in fact a complete characterization of increasing Lévy processes, Here we state the sufficiency

part.

Proposition 4.15. Let b € Ry be a constant and let N be a Poisson random measure on Ry x R4 with mean measure

Vv = ur X A, where A satisfies

(y ADA(dy) < 0.
R+

Define
&:br+/ yN(dt,dy) = bt + N (Ijo,1 - ).
[0,¢]xR4

Then S = (S;)ser, is an increasing Lévy process on R4, and

Ee™"S' = exp {—t |:br + / (1— e—ry)l(dy)i|} .
R+

Note S; = M([0,¢]) where M =« + L.

Example 4.16 (Gamma process). Let S be as in Proposition 4.15 with b = 0 and

ey
A(dy) = a’

dy, y>0

for some constant a, ¢ € (0, +00). Then A satisfies Eq. (22) so S is an increasing Lévy process and

e ¢y

o0
Ee "5t =exp{—t/ (1—e")-a dy%
0

c+r
= exp {—al -log }
c

~ e\
" \e+r '
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The integral can be worked out as follows:

o [ ,—cy e—(r+c)y © ,—zy
(-
0 y y 0 Y olr
(o) c+r
= / (/ e_Zydz) dy
0 c
ct+r 00
:/ (/ e_zydy) dz
c 0
c+r 1
:/ -dz
c z

c+r
P

c+r
dy

= log

Thus, S; has a gamma distribution with shape index a and scale parameter c¢. For this reason S is called a gamma

process.

Example 4.17 (Increasing stable process). Let S be as in Proposition 4.15 with b = 0 and

Mdy) = — R

i-a)

where a € (0,1) and ¢ € (0, +00). Again A satisfies Eq. (22), so S is increasing Lévy. Even though S; < oo almost
surely,

ES; = t/ yA(dy) =1t (4+00) = 400
R+

for every ¢ > 0. The process S is called a stable process with index a € (0, 1), because (S, ) has the same distribution

as (u'/S,) for every u > 0, as can be demonstrated from the Laplace transform

[Ee—rS, — e—c~t-r“.

The distribution of S; does not have an explicit form in general. However for @ = 1/2 one has
t
PLS, € dy} = — o= /4y gy,
4my3
4.5 Poisson Processes

Let N = (N¢):er, be a counting process on R4. Then there is an increasing sequence of random variables (7%)
taking values in R such that

o0
Ny = Z o1 (Tk) . 1 € Ry
k=1

The sequence (7} ) forms a random counting measure M on R, and

Mf =) f(T)

k=1

for positive Borel functions. Indeed N, = M ([0, ¢]). Finally, let ¥ be the filtration generated by N.
Theorem 4.18. Let ¢ € (0, +00). The following are equivalent:

1. N is a Poisson process with rate c.
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2. M is a Poisson random measure with mean v = ¢ - ur.
3. (N; —ct)rery is an F-martingale.

4. (Ty) is an increasing sequence of ¥ -stopping times, and the differences 77, 7, — 71, T5—1T»5, . . . are independent
and exponentially distributed with parameter c.

The next theorem’s characterization is often used as a definition: A Poisson process is a counting process with
stationary and independent increments.

Theorem 4.19. The counting process N is a Poisson process if and only if it is a Lévy process.
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5 Lévy Processes

5.1 It6-Lévy Decomposition
Definition 5.1. X is a Lévy process in RY with respect to ¥ if it is adapted to ¥, X¢ = 0, and

1. for almost every w, the path t > X;(w) is right-continuous and left-limited,

2. the increment X1, — X, is independent of ¥; and has the same distribution as X, for every ¢,u € Ry.

Example 5.2. e The simplest and trivial Lévy process is the drift X; = bt for some b € R¢.
e A Wiener process W is a Lévy process in R that has continuous paths and has Gaussian distribution with mean
0 and variance u for the increment W;,, — W;. The most general continuous Lévy process in R has the form

thbt+CWt, tE|R+

A similar result holds for processes in R?.

e A Poisson process N with rate ¢ is a Lévy process that is a counting process having the Poisson distribution

with mean cu for the increments N;4, — Ny.

e A compound Poisson process is a Lévy process. Let N be a Poisson process and (Y},) an independency of
identically distributed random variables. Then the process defined by

o0
Xt = Z Yn“{nsN,}
n=1

is a compound Poisson process, in agreement with Example 4.12. Its every path is a step function; its jumps
occur at jump times of N and the size of successive jumps are Y;, Y>,.... It can be shown that, conversely,
every Lévy process whose paths are step functions is a compound Poisson process.

e Increasing Lévy processes are Lévy processes with state space R, because the positivity of S, and stationarity
of X;4+, — X; implies that every increment is positive. Increasing Lévy processes include Poisson process,
compound Poisson process with positive jumps, gamma process and stable process with indices in (0, 1).

Recall that a random variable is said to be infinitely divisible if, for every integer n, it can be written as the sum of
n independent and identically distributed random variables. If X is a Lévy process, then for fixed > O andn > 1, we
can write X, as the sum of the increments over (0, 8], (8, 26], ..., ((n — 1), né] where § = t/n, and those increments
are independent and identically distributed. Thus X, is infinitely divisible for every ¢, and so is every increment
Xt+u — X;. It follows that the characteristic function of a Lévy process X has the form

(p(r) — [EeirXt — et¢(r)’
sothatfort =# +---+ 1, and X; = X;, +--- 4+ X;,,, we have
(p(r) — [Eeir(th+"'+X[,,) — [EeirX[l .”eirX;,,
— ([EeirXt] ) . ([Eeiran)
=ox,, (r)---ex,, (1)
— etl¢(r) e etn¢(")
— o1 +-+t)$(r)

= o)
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¢ (r) is called the characteristic component of X .

If X is a Lévy process, then it is possible that [E X; does not exist. This is the case, for instance, if X is a compound
Poisson process and the Y, do not have expected values. Or it is possible that EX; is well defined but is equal to
infinity. However, it means and variances of X are well-defined, then they must be linear in ¢, i.e.

EX; = at, VarX; =vt, t e Ry,

which is a consequence of the stationarity and independence of the increments. For example, let f(t) = EX; and
since X; + X; = X, we have E(X; + X;) = 2EX, = EX»; = 2f(t) = f(2t). Here a is a vector and v is a
symmetric and positive definite d x d matrix.

Example 5.3 (Pure jump processes). Let AX;(w) = X;(w) — X;—(w) be the size of a jump at time 7. Let D, be the
discontinuity set for the path X(w), that is,

D, ={t >0:AX;(w) # 0}.

If X is continuous then D, is empty for almost every w. If X is Poisson or compound Poisson, then D,, is an infinite
countable set, but D, N (s, u) is finite for all 0 < 5 < u < oo. For all other processes, the set D,, is still infinite but
Dy N (s,u) is infinite forall 0 < s < u < o0.

A pure-jump process is a process X such that X, is equal to the size of its jumps over [0, 7], i.e. for almost every
w,

X(@)= >  AX;w). teRy,
S€Dy,N[0,¢]

where Vi () = 3 cp, njo.s] [AXs(@)| < 0o. Vi(w) is called the total variation of the path X(w) over [0, 7].

Every increasing Lévy process without drift is a pure-jump Lévy process, so is the difference of two such indepen-
dent processes. The following constructs such processes in general. Conversely, every pure-jump Lévy process in RY

has the form given in this theorem.

Theorem 5.4 (Pure Jump Processes). Let M be a Poisson random measure on Ry x R? with mean measure 7, x A,
where the measure A on R? satisfies {0} = 0 and

/[Rd (ly| A DA(dy) < 4o00. (23)
Then almost surely,

X :/ yM(dt,dy) = M (Tjo.11- y)
[0,£]xR4

convergences absolutely for every ¢, and the path X has bounded variation over [0, ] for every ¢ € R4. The process

X is a pure-jump process Lévy process in R¢, and its characteristic exponent is

b(r) = / " DAy, 1 e R
R4
Several remarks:

e The condition that A{O} = 0 is for reasons of convenience: to prevent linguistic faults like “jumps of size 0”,
and also to ensure that X and M uniquely determine each other.

e The measure A determines the probability laws of M and X . It is called the Lévy measure of X . It regulates the
jumps: for every Borel subset 4 of R? with A(A) < oo, the jump times of X with corresponding sizes belonging
to A form the counting process ¢ — M ([0, 1] x A) = M(1[o ] - 14), and the latter is a Poisson process with rate
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A(A) (because the mean is EM (Tg - 14) = pr([0,2]) - A(A) = t-A(A)). If we imagine some {(7;, ¥;)} forms
M , then

o0
M (To.1-14) = Y Tpog(To) - 1a(Ye) = #{(T;.Y;) : 0< T; <t and ¥; € A}.
i=1

If A(R?) = +o0, then this implies that X, has infinitely many jumps all the time, as the following remark says.

e The condition Eq. (23) is essential. It is satisfied by every finite measure. More interesting are infinite measures
that satisfy it; to such measures there correspond pure-jump processes that have infinitely many jumps during
every interval (s,7) with s < ¢; but, of those jumps, only finitely many may exceed & in magnitude no matter

how small & > 0 is. An example is the gamma process: for A(dy) = y~'e™>dy,y € (0, +00) we have

00 eV 1 00 o=y
/ (yAl)—dy = / e Vdy +/ —dy < +00,
0 y 0 1Y

but

Example 5.5 (Gamma processes). Recall that a gamma process is a stochastic process with independent gamma-
distributed increments. It is a pure-jump increasing Lévy process with intensity measure A(dx) = ax ™! exp(—cx)dx
for x € (0, 400). Those jumps whose size lies in the interval [x, x + dx) occur as a Poisson process with intensity
A(dx).

Let X and X~ be independent gamma processes. Then
X=X"-X"

is a pure-jump Lévy process in R. It is called a two-sided gamma process. If they have the same shape rate a and scale
parameter c, then the Lévy measure of X is given by

o—clxl

Aldx) =a dx, xeR\{0},

|x|
with {0} = 0. In this case it is called a symmetric gamma process. The distribution of X; is not gamma and cannot

be expressed explicitely. However, its characteristic function is

[Eeier _ ( C )at c at _ C2 at e [R
c—ir cH+ir c2+r2 ’ ’

The total variation process V = X + X~ is a gamma process with shape rate 2a and scale parameter c.

Theorem 5.6 (Compensated Sum of Jumps). Let B denote the closed unit ball in R?. Let M be a Poisson random

measure on Ry x B with mean u;, X A, where the measure A on B satisfies A{0} = 0 and

[B ly[2A(dy) < oc. (24)

For ¢ € (0, 1), define
X7 =/ yM(a’t,dy)—tf yA(dy), teR4.
[0,£]x(B\B:) B\B;

Then there exists a Lévy process X, such that
X =limX;
el0
almost surely, the convergence being uniform in # over bounded intervals. The characteristic exponent of X is

¢(r) = /B(e""y —1—ir-y)A(dy), reR?.
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We denote the limiting process X by

x=/ yMwmm4/MW)
[0,¢]1xB B

We see X7 = Y/ — a.t. The theorem says, if A fails to satisfy Eq. (23), but satisfies Eq. (24), then as ¢ — 0, Y/ fails
to converge and a, fails to converge, but their difference X; = Y — a,t converges to X; = Y; — at. The process X
is called a compensated sum of jumps. In the simplest setting, where y > 0 is one-dimensional, failure of Eq. (23)
amounts to

1
/ymm=+m
0

which is the case if for example A(dy) = 1/y2dy, but

1 1 1 1
| 2ran =[5 S = [ 1y < roe,
0 0 y 0

So for this kind of Lévy process X, it has infinite variation (i.e. [z yA(dy) = +00) over every time interval (s, 7).
The following theorem shows the construction of the most general Lévy process. It is the t6-Lévy decomposition.

Theorem 5.7 (Ito-Lévy decomposition). Let b € R?, let ¢ be a (d x d’) matrix, and let A be a measure on R with
A{0} = 0 and

/(MMDMM<w.
R4

Let W be a d’-dimensional Wiener process, and independent of it, let M be a Poisson random measure on R x R¢
with mean py x A. Then

X =bt +cWi + (/ yM(dt,dy) —t/ y)L(dy)) +/ yM(dt,dy)
[0,£]xB B [0,]xR4\B

defines a Lévy process in R?, and the characteristic exponent of X is, with v = ccT,

Mﬂ=ihr—lwvr+/@”y—l—ﬂ-wM®0+/‘ (€Y — DA(dy), reR?. (25)
2 B RI\B

Eq. (25) is called the Lévy—Khinchine formula. Note that if A satisfies Eq. (23), then the integral

a=fyM@)
B
converges absolutely and the process X becomes
X,:(b—a)t+cW,+/ yM(dt,dy), teR4,
[0,£]xR4

a drift plus a (continuous) Wiener process plus a pure-jump process. Accordingly, the characteristic exponent becomes

o(r)=ir-(b—a)— %r-vr +f (€™ —DA(dy), reR?.
R4

5.2 Stable Processes

Leta € Ry andlet X = (X,)tem+ be a Lévy process in R?. Then X is said to be a-stable, or stable with index a, or
self-similar with index a, if the process X =X ) er + has the same probability law as X for every s € (0, 00).
The condition is also equivalent to that s~Vay s having the same distribution as X, or that X; and LD ¢ 1 having the
same distribution.
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It can be shown that the index a cannot exceed 2. If X = W or X = c¢W then X is stable with index 2, namely
X, has the same distribution as /7 X for every ¢. If a € (0, 1), then the process is necessarily a pure-jump Lévy
process whose Lévy measure is infinite and has a specific form. If a € (1, 2), then the Lévy measure is again infinite
and has a specific form, and the paths have infinite variation over every time interval and cannot be pure-jump type. If
a = 1, there are three possibilities: the process can be pure drift and thus deterministic; or it can be a Cauchy process,
the paths having the same qualitative features as in the case of indices in (1, 2), but each increment having a Cauchy

distribution; or it can be a Cauchy process plus some drift.

Example 5.8 (Standard Cauchy process on R). A Cauchy process X = (X;) taking values in R is a Lévy, symmetric
and stable process with index 1. The distribution is

t

[P{Xt € dx} = mdy,

yeR.

The Lévy measure is

1
Aldy) = n—yzdy, yeR.

1 -] 1
/ yA(dy) = / —dy = / —dy +/ —dy =0,
B\B: B\B: )Y -1 Ty e Y

so according to Theorem 5.6, almost surely

‘We have

X; = lim yM(dt,dy) = / yM(dt,dy).
&40 J10,1]xR\(—¢.¢) [0,/]xR

It follows that

Ee'™ 1 = exp {t lim/ (€' — l)l(dy)}
e}0 JR\(=¢,¢)

1—
exp {ZI/[; %dy}
+

=t

The Cauchy process is not a pure-jump process, because

/ YA(dy) = [ (—y)A(dy) = 400
(0,1) (—1,0)

1,
and it follows that
| ymndy = | (—y)M(dt. dy) = +o0
(s,¢)x(0,1) (s,t)x(—1,0)

for every s < ¢. In other words, over every time interval (s, ¢), the path X has infinitely many upword jumps whose
sizes sum up tp +o00, and infinitely many downward jumps whose sizes sum up tp —oo. In particular, the total variation
over (s, 1) is equal to +o00 always.

The process X is not a martingale for the simple reason that E X; does not exist.

5.3 Lévy Processes on Standard Settings
Recall the following technical definitions:

e A probability space (2, #, P) is complete if for all A € # with P(A) = 0, one has A’ € J forall A’ C A.
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e An extended filtration ¥ over R is one that includes Foo = lim ¥; = Vv, ¥, the o-algebra generated by unions

of all ¥;. We say ¥ is right-continuous if

F: = m :Ft—i-ay teRs.

>0

Heuristically, this means that ¥; includes all events that can be told by an “infinitesimal peek” into the future. ¥
is augmented if (2, #, [P) is complete and that 5y (and therefore all ¥;) contains the collection of all negligible

events in .

Definition 5.9. A stochastic base is a collection
B=(Q,H,F,0,P)

where (€2, J, P) is a complete probability space, ¥ = (¥7)ser,. is an augmented right-continuous filtration on it,

and 0 = {60;};cRr . is a semigroup of operators on 2 such that
o = w, 6y060,w=0,1,0, t,ueclky.

{0:}1er, are called time-shifts.

Definition 5.10. Let X = (X;);er, be a stochastic process with state space R<. It is called a Lévy process over B if
it is adapted to ¥ and the following hold:

1. Regularity. X is right-continuous and left-limited, and Xy = 0.

2. Additivity. X;4, = X; + X, 0 0, forevery t,u € R.

3. Lévy property. For every t,u € R4, the increment X,, o 6, is independent of %; and has the same distribution

as Xy.

Note that if a process X is additive, and Z; = Z¢ + X;, then ‘ Ziyy = Zy o0, | This is because Z;1, =
ZO+XI+M = ZO+Xt+Xu°9t = Zt+Xu09t,While Zuoet = (Z()+Xu)09t = Zooet+Xu001 = Zt+Xu°9t-

Theorem 5.11 (Markov property). Suppose X is a Lévy process over 8B, and let § denote the filtration generated by
X . Then for every time ¢, the process X o 6; is independent of ; and has the same law as X. Equivalently, for every

bounded random variable V € G,
[EtVOGt:[EV, IE[R+

Theorem 5.12 (Strong Markov property). Let §oo = §oo V N where N is the o-algebra generated by the collection
of negligible events in J¢. If X is a Lévy process over B, T is a stopping time of ¥, then for every bounded random

variable V € goo,
ErV o 9T“{T<oo} = ([EV)H{T<00}-
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6 Brownian Motion

6.1 Introduction

Definition 6.1. A stochastic process X = (X;);er, with state space (R, B(R)) is calleed a Brownian motion if it is
continuous and has stationary and independent increments. A process W = (W;).er, is called a Wiener process if it

is a Brownian motion with
W() = 0, [EW[ = 0, VarWt =1, t e [R+.

If X is a Brownian motion, then it follows from the remarks in Example 5.2 that X has the form
X,=X0+at+bWt, t€|R+.

Theorem 6.2. W = (W;);eRr + is a Wiener process if and only if it is continuous and is a Gaussian process with mean
0 and
Cov(W;, Wy) =s At, s,teRy.

Theorem 6.3. Let W be a Wiener process. Then the following hold:

1. Symmetry. The process (—W;)ser, is again a Wiener process.
2. Scaling. W = (c™1/? Wer)ter . is a Wiener process for each ¢ € (0, +-00), i.e. W is stable with index 2.

3. Time inversion. Putting WO = 0and W, = Wy, for t > 0 yields a Wiener process (W,) teRy -

Proof. Symmetry and scaling properties are immediate from the definition for Wiener processes. To show 3, we start
by noting that {W, :t > 0} is a continuous Gaussian process with mean 0 and Cov(Wy, W;) = s At for s, t > 0. For

example, for s < ¢, we have 1/s > 1/t, so
Cov(Wy, Wy) = (st) - Cov(Wyss, Wiye) =st-(1/t) =s =s At

Fors > t,
Cov(Wy, Wy) = (st) - Cov(Wy/s, Wiyy) = st -(1/s) =t = s AL

Thus, 3 will follow from Theorem 6.2 once we show that W is continuous at time 0, that is, almost surely,
limtW;,; = 0.
40 1

We show the equivalent condition that W; /¢t — 0 almost surely as ¢ — oo. To this end, we start by noting that if

n > 0is an integer and ¢ € (n,n + 1], then

1
+ — sup |[Wyps — Wyl. (26)

0<s<l1

1 1 1
W = =Wa+ (W = Wp)| < |=-W,
t n n

By strong law of large numbers, W, /n — 0 almost surely, since W;,, = W; + --- 4+ W and each of the n copies of W,
has mean EW; = 0. Next, by Kolmogorov’s inequality (continuous time version),

1
n2e2’

1 1
P {— sup |Wn+s —Wn| > 8§ < W[HWYH-I —VVn|2 =

n o<s<1

Since Y 1/n? is finite, the Borel-Cantelli lemma shows that the last term in Eq. (26) goes to 0 almost surely as

n — oo. Hence W;/t — 0 almost surely as ¢ — oo and the proof is complete. O
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Theorem 6.4 (Strong Markov property). Let W be a Wiener process and let § be the filtration generated by W. Let

T be a stopping time of ¥ . Then for every bounded random variable V' € §,
[ETV o QTH{T<00} = ([EV)H{T<00}~

In particular, if T < oo, then the process W o 0y = (Wr4y — Wr)yer + is independent of F7 and is again a Wiener
process.

Theorem 6.5. Let T be an ¥ -stopping time, and let U € F7 be a positive real-valued random variable. Then

Er fWr+v = Wr)lir<ooy = [Ef(Wu)] 7 <o0y, YV f € B(R) bounded.

6.2 Hitting Times and Recurrence Times
Let W be a Wiener process over a stochastic base 8. We are interested in hitting times
T, =inf{t >0: W, >a}, ae€Ry, 27
the first time that W; € (a, +00). Let § be the (augmented) filtration generated by W.
Proposition 6.6. Almost surely, 7o = 0.

Proof. According to Blumenthal’s zero—one law, each event in §y has probability zero or one. We have {7y = 0} € .
Note that {W; > 0} has probability 1/2, and w € {W; > 0} = w € {Tp < t} for every t > 0 implies that
{Wy >0} C{To <t},soP{Top <t} > 1/2foreveryt > 0. Letting t — 0 concludes the proof. O

According to the above proposition, for almost every w, and for every ¢ > 0, there is u < ¢ such that W,, > 0; there
is also 0 < s < ¢ such that W(w) < 0, this being by symmetry. Taking ¢ of the second phrase to be the time u of the
preceding one, and recalling the continuity of the paths, we conclude that for every ¢ > Othereare0 < s <t <u <¢
such that

Ws(w) <0, Wi(w) =0, W,(w)>D0.

Interating the argument with s replacing ¢ yields

Corollary 6.7. For almost every w, there are times u; > f; > §; > Uy > t, > §p > --- with limit O such that, for
each n,
W, (w) <0, W, (w)=0, W,,(0)>0.

Thus, the Wiener path W(w) is highly oscillatory. Starting with Wy (w) = 0, the path spends no time at 0; it crosses
under and over O infinitely many times during (0, £), no matter how small & > 0 may be. By applying the corollary to
the time inversion process in 3, we get

Corollary 6.8. For almost every w there exist times u] < f; < §] < Uy <t < §3 < --- with limit +o0 such that
lim W, (w) = —0c0, Wy, =0 Vn, lim W, (0)= +oco.
n—>oo n—>o00

In particular, the set { € Ry : W;(w) = 0} is unbounded.

We next explore the distribution of hitting times 7.

Lemma 6.9. For a > 0, we have

1
P{Tu <t.W; >a} = P{T, < t}P{W;_1, > 0} = E[P{T“ <t}
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Proof. Take T =Ty and U = (t — T,) Vyr, <1y € F1,, and f = 1(g,400) in Theorem 6.5, we get

E7, [T0, 400 Wrasv = Wr) Yz, <] = Ex, [V, 4000 Wi — @) Ny, <13]
= E7, [T, +00) W) Tizu<ny]
= Er, W< Vwi=a3]
= E[f(Wu)] YT, <13
= P{Wi—1, > 0} ly7, <}

Take expectations on both side of

E7, [T, to00) (W) Vir<ny] = P{Wi—1, > O} Uyr, <y
we get

1
[Eﬂ(a,+oo) (Wt) H{Taﬁt} = [P{Ta <t,W; > a} = [P{VVt—Ta > 0}[P{Ta < Z} = E[P{Ta < l}.
O]

so P{T, <t} =2P{T, <t,W; > a} =2P{W; > a} = P{|{W;| > a}. Thus

In particular, since {W; > a} C {T, < t}, the intersection of the two events is {W; > a} N {T, <t} = {W; > a},

P(T, <1} = P, > a®} = P {(ﬁwl)z : a2}
=P{tZ>>a*} withZ ~ N(0,1)
a2

Thus 7T, has the same distribution as a?/Z2. Since Z € R\ {0} almost surely, T, € (0, +00) almost surely. The

density can be calculated as
ae—a2/2t
P{T, edt} = ———dt. t>0. (28)
¢ N 2mt3

From the formula we can see that ET, = +o0.

Proposition 6.10. Fix a € (0, +00) and define
T,— =inf{t >0: W; >a} =inf{t > 0: W; = a}.
Then T, is a stopping time of ¥ and 7, = T, almost surely.

Proof. The statement that T,_ is a stopping time of § is obvious. Clearly T, < T, so T,— < 400 almost surely,
and W o Or,_ is again Wiener by the strong Markov property at T,—. Thus by Proposition 6.6 we have Tp o 0r_, =0
almost surely, and so

Ty =Ts—+Tho GT_a =T,-

almost surely. O
We recall some facts from probability theory. Let X and Y be independent standard Gaussian. Then X2 and Y2

both have gamma distribution with shape index 1/2 and scale index 1/2. The random variable 4 = X?/(X? + Y?)
has beta distribution with index pair (1/2, 1/2). This beta distribution is also called arcsine distribution, because

r{1/2+1/2) w2 N1 —u)2 du = L

T'(1/2)T(1/2) 7 Ju(l —u)
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because I'(1/2) = /=, and

2
= Zarcsinv/u, 0<u<l.

¥ 1

Note that A = X2/(X2 +Y2) €[0,1],s0tA4 € [0,¢] and 1/ A € [t, +00].
Let

1. G; = sup{s <t : Wy = 0}, the last time before ¢ such that W = 0;

2. D; = inf{s >t : Wy = 0}, the first time after # such that W = 0.

Note G; <t and D; > t for each t € R4. Also note that, if G; < s < t, then Dy cannot fall into the interval (s, ),
otherwise the definition of G; would be violated; thus Dy > t. Conversely, if Dy > ¢, then Wy # 0 for all ¢/ € (s, ),
so in particular G; < s at least. Thus {G; < s} = {Ds > t}.

Proposition 6.11. Foreacht € Ry, G; ~tAand D; ~ t/A.

Proof. Let X and Y be independent standard Gaussian variables. Recall 7,; ~ a? /Y 2. Consider R, = D; —¢t. If
W; = x, then R; is the hitting time of the point —x = —W; by the path W o 6;. Since W o 6, is independent of ¥;,
sois (—W) o 6y, so we conclude from here that R, ~ (—W;)?/Y? = W}?/Y 2. We may replace W; by /X to obtain
R, ~tX?/Y?2. Thus,

Di=t+R; ~t(X?+Y?)/Y?>~1/A.

Finally,
P{G, <5} = P{D;s > 1} = [P{%>t} = PiA <)

so that G, ~ tA. O

For example, the probability of the event that W, # 0 during an interval [s, z] can be calculated as
’ s 2 . s
P{Wy #£0 Vi’ €ls,1]} = P{G; <s} =P {A < ;} = —arcsin /.
14

The variable is called forward recurrence time. It is the time needed for the process W to return

to value O given that it is in W;. is called backward rcurrence time; it is the time needed to reach the

point 0 if we go backward in time. It is shown in the proof that
R ~tX?/Y? =1C?,
where C is standard Cauchy. Because A and 1 — A have the same distribution, we have

Ky Ky
[P{Q,fs}:[P{t—tAfs}z[P{l—AS;}=[P{ASE}
2 \/?
= —arcsin, /-, 0<s<t.
b4 t

A = / Ig, o Wsds.
[0,7]

Then A, has the same distribution as that of 4, where A has the arcsine distribution.

Theorem 6.12. Let
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Figure 1: Relationship between 7, and M, from the textbook (Cinlar ).

6.3 Hitting Times and Running Maximum

We are interested in the process T = (T5)qer . of hitting times and its relationship with the process M = (M;)er,
of running maximum, defined as
M; = max Wy, teRy.

0<s<t

Note that the definition of hitting times Eq. (27) remains true when we replace W; by M;. Indeed, the paths a > T, (w)
and ¢t — M;(w) are functional inverses of each other:

Ty(w) =inf{t > 0: M;(w) >a}, M;=inf{a >0: T,(w) > t}.
See Fig. 1 for an illustration from the textbook.

Proposition 6.13. For almost every w, the path a > T, (w) is right-continuous, strictly increasing, real-valued, and
with Ty(w) = 0 and lim,—, o T, (w) = +o00. For almost every w, the path ¢ — M;(w) is increasing, continuous,
real-valued, and with My(w) = 0 and lim;—, oo M;(w) = +o00.

Proposition 6.14. For every a and ¢ in R,
P{T, <t} = P{M, > a} = P{|W;| > a}. (29)

The above proposition implies that M, has the same distribution as |W;| for each ¢. Thus, in particular, EM; =
\/m and EM? = . However, this does not imply that the probability law of the whole M is the same with |W|.

‘We mention that Eq. (29) is also called the reflection principle. It says if you reflect the path around W;, at any 7o,
then the reflected path (namely (2W;, — W})e[1y,00)) has the same distribution as (W;);e[o,00)-

Theorem 6.15. The process T = (Ty)qer,. i8 a strictly increasing pure-jump Lévy process. It is stable with index
1/2, and its Lévy measure is

A(dt) =

1
mdt, t>0. (30)

Proof. Fix a,b € (0, 00). In order for W to hit (a + b, 00), it must hit (a, co) first, and then W o O, must hit (b, 00).
Thus,
Togp =Tg+Tpo '9Tu'
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Figure 2: Visualization of the Poisson random measure N of hitting times 7 = (T;)qer .. from the textbook (Cinlar

).

Since T, < oo almost surely, the process W o 67, is independent of 7, and is again a Wiener process, by strong
Markov property at T,,. Thus 7,45 — T, = Tj o 07, is independent of F7, and has the same distribution as 7.
Together with Proposition 6.13, this shows that the process 7 is a strictly increasing Lévy process over the stochastic
base (2, #, 3:', é, P), where 3’:}1 = Fr, and éa = 0r,.

The distribution of T}, is the same as that of a?T}, by Eq. (28). Thus, the Lévy process is stable with index 1/2.
Every such process is of the pure-jump type, and its Lévy measure has the form A(dt) = ¢/t3>/%dt. The constant
¢ = 1/+/27 because the following equation holds:

Ee"Ta = exp {—a (1- e_”)/\(dt)§ = a2,

R+

Theorem 6.16. Let N be the random measure on R4 x Ry defined by

NB)= Y 1pa.T,-T,). BeB(R}).

a:Tg>Ta—

Then N is Poisson with mean gy x A, where A is given by Eq. (30). We have
T, =/ uN(dx,du), a€Rj;.
(0,a]xR4

See Fig. 2 for a visualization of N from the textbook. Note that, for fixed a, almost surely there are no atoms on
the line {a} x R4, so T, = T,— almost surely, in agree with Proposition 6.10. Since N has infintely many atoms in
any (a, b) x (0, 00), the path M stays flat at infinitely many levels on its way from a to b, but only finitely many of

those exceed ¢ in duration no matter how small ¢ > 0 is.

6.4 Other Properties
We put the following definitions or notations for reference.

o A perfect set is a closed set with no isolated point. The simplest example is a union of finitely many disjoint
closed intervals. Another example is the Cantor set. Every perfect set C has the power of the continuum, that

is, there exists an injection of R4 into C.
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Zeros

We are interested in the qualitative features of the set
Co={teRy Wi (w)=0}, we,

the set of zeros of W. For fixed w, it is the inverse image of the closed set {0} under the continuous mapping
t = W;(w), so it is closed, and its complement is the union of a countable collection of disjoint open intervals, called

contiguous intervals.

Theorem 6.17. For almost every w, the set C,, is perfect and unbounded, its interior is empty, its Lebesgue measure
is zero, and it has the power of the continuum.

Proof. We already showed that C,, is closed. It is unbounded for almost every w from Corollary 6.8. Its Lebesgue

measure is zero for almost every w since

EurL(C)= [E[ Ty (Wr) dt = / P{W; = 0}dt = 0.
Ry R4

This implies that the interior of C, is empty for almost every w, because no set of Lebesgue measure zero can contain
an open interval. To complete the proof, there remains to show that, for almost every w, the set C, has no isolated

point. Let
R+ \ Co = | J(Gi(w), Di()). 31)

ieN

According to the analysis after Proposition 6.6, there is an almost sure set 2¢¢ such that, for every w € Qgo,
there is a strictly decreasing sequence {tx} C C, with limit 0, i.e. 0 € C,, is a limit point of C,. Similarly, there
is an almost sure event €2; such that D;(w) is a limit point of C, for every v € ;. Consider the intersection
Q' =QoNQ N N---. Forw € Q’, neither 0 nor D; (w) is isolated. In view of Eq. (31), Cy, is perfect for every
we Q. O

Total Variation and Quadratic Variation
The (probabilistic) quadratic variation of W is [W, W]; = t.
For almost every w, the path W(w) has infinite total variation over every interval [a, b] with a < b.

Holder Continuity, Nowhere Differentiability

Leta € Ry, B C R4, and f : Ry — R. The function f is said to be Holder continuous of order @ on B if there is a
constant k such that

lf@) = f) =k-|t—s]* s.1€B.

It is said to be locally Holder continuous of order « if it is such on [0, b] for every b < oo. Note that if f is

differentiable at some point, then it is Holder continuous of order 1 at some neighborhood of that point.

Proposition 6.18. For almost every w, the Wiener path W(w) is not Holder continuous of order v on any interval for

« > 1/2. In particular, for almost every w, the path is nowhere differentiable.

Proposition 6.19. For almost every w, the path W(w) is locally Holder continuous of order « for every o < 1/2.
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