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1 Metric Spaces

DEFINITION 1.1 A metric d on a set X is a function from X X X to R that satisfies
a) d(x,y) =d(y,x) for any x,y € X (Symmetry);
b) d(x,y) > 0forany x,y € X, with d(x, y) = 0 iff x = y (Positive-definiteness);

c) d(x,y) £d(x,z)+d(z,y) for any z € X (Triangle inequality).

A metric space is a pair (X, d) where X is a set and d is a metric on it.

e Metric space is just a straightforward generalization of the Euclidean space R”.

e The norm || - ||, : R" — [0, 00) given by x = [|x]|, = (Z?zl |xi|1’)1/p defines the metric d,, with
d,(x,y) = [Ix = yll,. I shall sometimes use the two interchangeably to simplify notations.

e We prove Minkowski’s inequality.

Theorem 1.2 (Minkowski’s Inequality). Let x = (x{,...,x,),y = (J1,...,¥,) € R", and let 1 <
p < o0. Then

Ix+yll, < [IxIl, + llyll,,- (1)

O

Proof. Letx, = (x(l), e xg) and y, = (y(l), cees yg) be the unit vectors for x and y respectively, so that
X = axy and y = by,, where a = [[x]|, and b = |ly||,. Since the function x + |x|” is convex, for
t € [0, 1] we have

|zx? +(1 - r)y?"’ <1 )x?|p +(1—1) ’y?lp Q)
foreachi =1,...,n. Summing over i, we have
%o + (1 = Dyol, <t + (1 -0 =1 3)
Witht = ai+b the above becomes
+ by ||?
% T B¥o <1, %)
a+b ||,
so that
Ix+yll5 < (a+b)" = xll, +yll,) )

e The following proposition justifies our definition of the metric d .

Proposition 1.3. Let the metric d,, be defined by

n 1/p
d,(x.y) = (Z |x,-|")
i=1
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for 1 < p < oo, and let the metric d, be defined by

doo(x’y) = max{lxl - y1|7 |x2 - y2|’ ooy |xn _ynl}

Then as p — oo, d,(X,y) = d,(X,y). ¢

Proof. We shall prove ||x||p = |IX]|lo asp = o. Fix6 >0andanx € R",and let S5 := {1 <i <
n:|x;| > |Ix|l, — 6}. For example, if x = (x;, X5, X3, %4, X5) = (2,3,5,7,6.9) € R> and § = 0.2,
then ||X||, =7, IX|lo —6 =7 — 0.2 = 6.8, and since 7 > 6.8,6.9 > 6.8, we have S; = {4,5}, the
index of the last two slots. We also use |.S5| to denote the number of elements in S, so |Ss5| = 2 in
the above example. Now,

1/p
lIxl, > <2<||x||m - 5))
S5

= (IIxllq — 6) 15517

Let p — oo, we have
lim [[x]|, > ||Ix[| — 6.
p—c0

Since 6 is arbitrary, we have

lim f1x]l, > x| (©)

On the other hand, |x;| < ||x]|, foreveryi =1,2,...,n,so for p > g,

n 1/p
<Z |x,-|P>
i=1
n 1/p
<Z |xilp_q|xi|q>
i=1

< IIx|I& 977 x|/,

lIxll,

Asp— o0, (p—¢q)/p— 1,9/p — 0, so we have

lim ||x|], < [IX]|- (7
p—oo

Combining Eq. (6) and Eq. (7) we see that

Jim flx], = {1l ®)

This proves that as p — oo, the metric d,, indeed converges to d,, since

lim d,(x,y) = lim [[x =y, = (X = ¥l = deo(X, ). O
p—0 p—>0



DEFINITION 1.4 Let A be a subset of R. A function f : A — R is called subadditive if

fla+b) < f(a)+ f(b)

forall a,b € A.

Lemma 1.5. If a function f is concave, and f(0) > 0, then f is subadditive. 3

Proof. Since f is concave, fort € [0, 1], f(tx) = f(tx+ (A —1)-0) > tf(x)+ (1 -1 f(0) > tf(x).
Thus
a

f(a)+f(b)=f((a+b)a—+b> +f<(a+b)aL_;_b> > ﬁf(a+b)+ai+bf(a+b)=f(a+b).

O

Corollary 1.6. Let (X, d) be a metric space. If f . [0,0) —» R with f(0) = 0 is strictly increasing
and concave, then fod is again a metric on X. ®

Proof. Symmetry and positive-definiteness for fod is straightforward. For the triangle inequality,
since d(x, y) < d(x, z) + d(z, y) for the metric d, we have

fd(x,y) < fld(x,2) +d(z,y) < fd(x,2) + f(d(z,)).

The first inequality holds since f is increasing on [0, 00), and the second inequality follows from the
above lemma. O

e Let (X,d) be a metric space. Then \/E is another metric on X, since the function f(x) = \/; is
concave and strictly increasing on [0, oo0) with f(0) = 0.

o Let (X,d) be a metric space. Then

d(x,y)

A9 = T 06

defines another metric on X, since f(x) = % is increasing and concave on [0, co). What’s more,
X

the metric d is bounded, since lim_, H—Lx = 1. Later we will see that d generates the same topology
on X as d, so that the concept of “boundedness” is really just about metric, and has nothing to do
with topology.

e By contrast, for a metric d on X, the function d? is no longer a metric on X. For example, let d be
the Euclidean distance on the real line, and take x = 0, y = 1, and z = 0.5 on R. Then d?(x, y) = 1,
but d(x, z) + d*(z, y) = 0.5% + 0.5 = 0.25 + 0.25 = 0.5, so that the triangle inequality fails.

e Note that, foraset X, d : X X X — R given by d(x,y) = 0 for all x,y € X is not a metric, since
positive-definiteness does not hold for d.

Let Bla, b] denote the space of bounded real-valued functions on [a, b]. Define a metric d on
Bla, b] by



d(f.,g) = sup |f(1)—g®l

t€la,b]

Then it is easy to see that d is a metric on B[a, b]. It is called the uniform metric on B|a, b].

DEFINITION 1.7 Let (f,) be sequence of real-valued functions defined on A C R. We say that
(f,) converges uniformly to f if for every € > 0, there is N > 0 such that | f,,(x) — f(x)| < € for
alln > N and all x € A.

The following proposition is immediate.

Proposition 1.8. f, — f uniformly if and only if lim,_, . d(f,, f) = 0. In other words, f, — f
uniformly if and only if (f,) C Bla, b] converges to f € Bla, b] with respect to the uniform metric. ¢

Proposition 1.9. Let f, be a sequence of continuous functions defined on [a,b] C R. If f, = f
uniformly, then f is continuous. ¢

Proof. Let € > 0. To prove f is continuous at a particular x, € [a, b], we need to find a 6 > 0 such
that |x — x| < 6 = | f(x) — f(xg)| < e. Now, according to triangle inequality,

1) = f (x| £ 1) = [ + 1f,(x0) = fu(xo)] + [f(x0) = f (o).

Each of the three terms on the right can be made small. Specifically, we can choose n > N for
some N such that | f(x) — f,(x)| < €/3 and |f,,(xg) — f(xy)| < €/3, by uniform convergence of f,
to f. We can also choose some 6 > 0 such that |[x — x| < é implies that | f,(x) — f,(x¢)| < €/3,
because each f, is assumed to be continuous. Then

|f(x)—f(x0)|5§+§+§=€.

This proves the limiting function f is indeed continuous. O

Corollary 1.10. Let Cla, b] denote the space of continuous real-valued functions defined on |a, b].
Then Cla, b] is closed in Bla, b]. o

Proof. Cla,b] is closed in Bla, b] if and only if for every sequence (f,) in C[a, b] that converges to
some f € Bla, b], f € Cla, b]. This is exactly what the above proposition says. O

e Another metric on C[a, b] is given by
b
a0 = [ 10 - stolax.
a

Proof. Symmetry is obvious. For positive definiteness, it suffices to prove that for f € Cla, b],
/ab | f(x)|dx = O implies |f| = O on [a, b] (so that f = 0 on [a, b]). Suppose to the contrary,
| f(xg)| # O for some x, € [a, b], say f(xy) > 0. Then since f is continuous on [a, b], f(y) > O for



all y sufficiently close to x,. Indeed, choose € > 0 such that f(x,) — e > 0. Then there exists 6 > 0
such that |y — x| < 6 implies | f(y) — f(xy)] < €,s0that 0 < f(xy) — e < f(¥). Now

b Xo+6
/ |f(x)|dXZ/ | f(x)|dx > 0,

0—0

contrary to our assumption that the integral on the left is zero. For triangle inequality, since | f + g| <

|f1+ |g|, we have
b b b b
/LHﬂS/UﬂHw=/Lﬂﬂ/ML ]

The norm || - ||; : Cla,b] - R, f — /a b | f] gives rise to the metric d above. Similarly, for
1 < p < oo we can define a norm || - ||, on C[a, b] by

b 1/p
anﬂu=</'vv> .

This can be seen as a generalization of the metric d,, on R" to the function space Cl[a, b]. The proof of
the Minkowski’s inequality

(L)< )"+ ([ )"

is basically same as Theorem 1.2, with integration in place of summation in Eq. (2). The crucial step
is the convexity of the function f(x) = xP for 1 < p < .

1.1 Banach Fixed Point Theorem

DEFINITION 1.11 (CONTRACTION) Let (X, d) be a metric space. A mapping T : X — X is
called a contraction on X if there is a € (0, 1) such that

d(Tx, Ty) < ad(x,y)

forall x,y € X.

Theorem 1.12 (Banach Fixed Point Theorem). Let (X,d) be a nonempty complete metric space
and suppose T : X — X is a contraction. Then there is a unique x € X such that Tx = x. o

Proof. 1. First, for a contraction, its fixed point is necessarily unique. For suppose x = Tx and
x' = Tx' are two fixed points of T. Then

dx,x")=d(Tx,Tx") < ad(x,x").
Since a < 1, we have d(x, x") = 0 and thus by positive-definiteness of d we have x = x.

2. Pick an arbitrary point x, € X and define a sequence (x,,) by



x3=Tx, = T3x0;

— — n .
x,=Tx,_1 =T"xg;

From Definition 1.11, a contraction is continuous. If our (x,) converges to some x € X, then

from x, = Tx,,_;, we have

x= lim x, = lim Tx,_; =T (lim x,_, ) =T,

h—0oo n—oo n—oo

so that x € X will be a fixed point of 7.

3. We show (x,,) is Cauchy, thus converges to a point x € X. Now,

d(Xpy1> %) = AT, TXpy)
< ad(xm, xm—l)
= ad(Tx Tx,_5)

m—1>

2
<ad(x,_1,%,_2)

< ad(xq, xp).

Then by the triangle inequality, we have

d(xm’ xn) < d(xm’ xm+1) + d(xm+1’ xm+2) + e+ d(xn—l’ xn)
<@+ a4+ "™ Hd(xy, xp)

am
= a(l - an_m)d(xl, xo)

1 —
m
< * d(x;,x9) =0 asm— oo.
l—a
This proves (x,) is Cauchy, and thus (x,) converges by completeness of X. O

1.2 Characterization of Compact Metric Spaces

We have proved in class that a compact subset of a metric space is closed and bounded. The converse
is true for R” (see Corollary 9.13), but may not be true in general, the simplest example of which
is the discrete metric on an infinite set X. Then the question is, what is the necessary and sufficient
condition for a general metric space to be compact?



DEFINITION 1.13 (X, d) is totally bounded if given ¢ > 0 (so that X c |
some finite x1, ..., x, in X such that X c (J_, B(x;,€).

B(x, €)), there is

xeX

Observation 1.14. Every compact metric space is totally bounded. ©
Theorem 1.15. (X, d) is compact if and only if it is complete and totally bounded. <o

Proof. By Theorem 9.23 below, compactness and sequential compactness are equivalent for metric
spaces. If (X, d) is sequentially compact, then it is obviously complete, since if a Cauchy sequence
has a convergent subsequence, the sequence converges to the same limit. X, being compact, is also
totally bounded.

Now suppose (X, d) is complete and totally bounded. Let (x,) be a sequence in X. We shall find
a convergent subsequence of (x,). Note that any subset of X is also totally bounded, so we may apply
totally boundedness to smaller and smaller subsets of X to capture a Cauchy subsequence.

First, finitely many B(x, 1), x € X cover X, so a single B(1) must capture infinitely many items
of (x,). Pick X, € B(1). Finitely many B(x, 1/2),x € B(1) cover B(1), so infinitely many items of
{x, } N B(1) must fall into at least one such B(1/2). Pick x,, € B(1/2)n B(1). Similarly, we can pick
X,, € B(1/3) n B(1/2)......Continuing this way, we obtain a subsequence (xnk) such that

X, € B(%) whenever k > N.

The subsequence (x,, ) is thus Cauchy, for

x, )< 1 whenever k,l > N.

d(xnk’ ne= N

Since X is assumed to be complete, (x,, ) converges. This proves every sequence in X has a convergent
subsequence. O

2 Sets

e Two sets A and B are equal (A = B) if and only if A C B and B C A. This simple fact is used
extensively in our proof of various theorems and propositions in topology. For example, if we want
toprove G =U NY, then we may prove G C (UNY)aswellas(UNY) CG.

e A C B means for every x € A, x is also in B.
e AUB={x:x€Aorx€B}; AnB={x:x€ Aand x € B}.

o If for a family of sets {U, },c;, U; € X for each index i € I, then their union is also a subset of X,
namely (J,c; U; € X.

e De Morgan’s Law:

(AUB) = A°n B, )
(AN B)* = A° U B. (10)



Or write X \ A for A€ if we were to make the ambient space explicit:

X\(AUB)=(X\A)N(X\ B);
X\(ANnB)=(X\A)U(X\ B).

More generally, for an arbitrary collection of subsets {U;},c; in X, we have

X\<UU,->=ﬂ(X\Ui);

iel iel
X\<Qu,-)=g<xwi>-

We will also use De Morgan’s law extensively.

Lemma 2.1. C\ (B\ A) = (C\ B)U (C N A).

Proof. Just write out the definitions:

B\A={xe€ Bandx ¢ A},

SO

C\(B\A)={xeC:x¢gBorxe A}
={xeC:x¢Blu{xeC:xeA}
=(C\ Bu(CnA).

Lemma 2.2. (B\ A NC=(BnNC)\A=Bn(C\ A).

Proof.

(B\A)NC={xeBandx ¢ Aand x € C}
={xeBandxeCandx ¢ A}
={xeBnCandx & A}
=(BNnOC)\ A

We can also write

(B\A)NC={xeBandx ¢ Aand x € C}
={x€eBandxeCandx & A}
={xeBandx e C\ A}
=BN(C\ A).

an
12)

13)

(14)



e Given two propositions p and g, p = g means “p implies ¢, namely, p being true is sufficient for
q being true, or g being true is necessary for the truth of p (if ¢ is not true, then p can not be true
either, since if it was, then we can deduce that g is true, a contradiction). Thus p being true is a
sufficient condition for g being true, and g being true is a necessary condition for p being true.

® p & g means p being true is necessary and sufficient for g being true, namely, p holds if and only if
q holds.

e Weuse “pV g~ todenote “por q”. pV g is true if and only if at least one of them is true.
e Weuse “p A g” to denote “p and g”. p A q is true if and only if both of them is true.

e We use “-p” to denote the negation of p. Recall from high school math that p = ¢ if and only if
q => p.

e De Morgan’s law: =(pV q) = (7p) A (mg) and ~(p A q) = (=p) V (79).

e Given two sets X and Y, a function from X to Y associates each x € X with an element f(x) € Y.
For a subset U of Y, its preimage, or inverse image, is the set f1(U) = {x € X : f(x) € U},
which is a subset of X. It is easy to see that for U,V C Y, we have

N =Xx\ Ay
fwuvy=rrloyu o,
lwnvy=rtw)n .

More generally,

f”(Um>=Ufﬂmx (15)
AEN

AEA
f”(ﬂ%)=ﬂfﬂw. (16)
AEA AEA

e For more on set theory, see my notes here.

3 Upper and Lower Bounds

We have learned least upper bound, greatest lower bound, lim inf and lim sup. It’s important to re-
member and understand the definitions of them clearly.

DEFINITION 3.1 For A C R, if there is a number M such that a < M for all a € A, then M is
called an upper bound for A. Similarly, if there is a number / such that / < a for all a € A, then
[ is called an lower bound for A.



https://lifei.tech/assets/pdfs/set-theory.pdf

DEFINITION 3.2 A least upper bound for A C R is a number x such that
e X is an upper bound for A;

e If r < x, then r is not an upper bound for A.

We write x = sup A.

Consider A = {g € Q| ¢ < 2} as a subset of Q. A does not have a least upper bound in Q. Every
rational number in [\/5, 00) is an upper bound for A, but no matter how close to \/5 our choice of
geQn [\/5, o) is, we can always find a rational number ¢’ such that \/5 < q' < g, who is even
closer to \/5 and hence to A. Thus, the set A does not have a least upper bound in Q. \/5 is a “gap”
that makes the rational number “incomplete”. To fill the gaps, one constructs real numbers R from
rational numbers (via Dedekind cut), and our real numbers would be complete, in the sense that:

Theorem 3.3. Every subset of R that is bounded above has a least upper bound. O

Placing our set A = {g € Q| ¢*> < 2} in R, we see that \/5 is the least upper bound for A.

Now consider Definition 3.2. Note that given € > 0, since x — € < Xx, it is not an upper bound
for A, so that there exists some a € A such that a > x — e. Otherwise, if no such a € A exists, then
a < x—eforall a € A, so that x — e would be an upper bound for A, a contradiction. Thus we have

Proposition 3.4. x = sup A if and only if a < x for all a € A, and for every ¢ > 0, thereisa € A
such that a > x — e. ¢

DEFINITION 3.5 A greatest lower bound for A C R is a number x such that
e x is a lower bound for A;
e If r > x, then r is not a lower bound for A.

We write x = inf A.

Proposition 3.6. x = inf A if and only if x < a for all a € A, and for every € > 0, there isa € A
such that a < x + €. ¢

There are three equivalent definitions of lim sup and lim inf. Be sure to remember and understand
all of them.

10
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DEFINITION 3.7 For a sequence (a,),en Of real numbers, we write limsup a, = L if there is a

h—0o0

number L such that
e Forany e > 0, thereis N € Nsuch thata, < L +eforalln > N;
e Forany e > 0and N € N, there is n > N such thata, > L —e.

This means that all but finitely many a,, lie to the left of L + ¢, while infinitely many a,, lie
to the right of L — e. Also, the number L that satisfies the above conditions is unique.
For a sequence (a,,),cn Of real numbers, we write liminf g, = [ if there is a number / such

n—oo

that
e Forany e >0and N € N, thereis n > N such thata, <[ +¢;
e For any € > 0, thereis N € Nsuch thata, >/ —eforalln > N.

This means that all but finitely many a,, lie to the right of / — €, while infinitely many a,, lie
to the left of / + €. The number / that satisfies the above conditions is unique.

DEFINITION 3.8 For a sequence (a,,),ey Of real numbers, let
E={x|x= klim a,, for some subsequence (ank) of (a,)}.
— 00
E is the set of all subsequencial limits of (a,). We define

limsupa, :=sup E; liminf g, :=inf E.
n—oo n—oo

DEFINITION 3.9 For a sequence (a,,),cn of real numbers, we define

limsupa, := lim <supak> ,

n—oo n=00 \ k>n

and similarly,

liminf a, := lim <inf ak> .

n—oo n—oo \ k>n

Sometimes we omit “n — oo’ in the bottom of lim sup and lim inf to simplify notations. (sup,, a;)
in Definition 3.9 is an abbreviation for sup{a, : k > n}, and (inf;, a;) is an abbreviation for
inf{a, : k > n}. Note that u, := sup{a, : k > n} is a decreasing sequence, so lim,_,  u, con-
verges in R = R U {00, —c0}. Similarly, inf{a, : k > n} is an increasing sequence, so it converges
as well.

Proposition 3.10. Definition 3.7 and Definition 3.8 are equivalent. ¢

11



Proof. We prove the case for limsup. The case for liminf is similar. Let x = sup E, where E is
as in Definition 3.8. We show x satisfies the two conditions in Definition 3.7. First, is a, < x + €
eventually? This is true, for otherwise, we would have a, > x + ¢ infinitely often, which implies that
a, = x + e infinitely often for some subsequence (a,, ). But then x > lim;_,,, a, > x + ¢, which is
not true. So x do satisfies the first condition.

Is a, > x — e infinitely often? This can also be easily seen to be true: since x — € is not an upper
bound for E, there is £ € E such that £ > x — e. Since ¢ is a limit of some subsequence of (a,), we

have that subsequence > x — e eventually, so our desired conclusion holds. O
Proposition 3.11. Definition 3.7 and Definition 3.9 are equivalent. ¢
Proof. We prove the case for limit superior. Let u, = sup,, a,, and letu = lim,_, ., u,. We show that

u satisfies the two conditions in Definition 3.7. Now, the limit means that

For every € > 0, there is N € N, such that |u, —u| < e foralln > N.

Thus given € > 0, there is N € N such that a, < u, < u + € for all n > N. This proves the first
condition.

On the other hand, invoking the definition of least upper bound, we see that there is an integer
m > n > N, such that a, > u, — €. Sinceu, > u—e€,wehavea, >u,—€>WUu—¢€)—e =u-12e.
This shows that u also satisfies the second condition of Definition 3.7. This proves the equivalence of
the two definitions. O

Proposition 3.12. Let limsupa, = L. Then there is a subsequence a, of (a,) such that

lim a, = L.
k—oo K

Proof. Resort to Definition 3.7, there exists a, such that |a, — L| < % Similarly, there exists a,,

such that |an2 -L|< 21—2 Continuing this way, we have a subsequence (ank) such that |ank —L|< zik
Then it is clear that limy_,, a, = L. m]

In the notation of Definition 3.8, the proposition above says that sup E € E.

4 Definition and Examples

DEFINITION 4.1 A topology on a set X is a collection 7 of subsets of X such that
a) 3, X ET;
b) arbitrary union of elements of 7 isin 7 ;
¢) finite intersections of elements of 7 isin 7.

Elements of 7 is called open sets. The pair (X, T) is called a topological space.

12



4.1 Examples of Topological Spaces

e Let X = {a,b,c}. Then T = {@, {a}, {a, b}, {a,b,c}} is a topology on X, as you can easily
verify.

e Foraset X,7 = {@, X} is atopology on X, called the trivial topology on X.

e For a set X, the power set P(X), the set that consists of all subsets of X, is a topology on X. It
is called the discrete topology on X.

e It is immediate that a metric space (X, d) is a topological space. The topology on X is the
collection of all open sets. Denote this topology by O(d). On the other hand, given a topology
T on a set X, does there exist a metric d on X that generates the topology 7 ?

DEFINITION 4.2 A topological space (X, T) is called metrizable if there exists some metric d
on X such that 7 = O(d).

Metric space is something we are familiar with. Given a topological space, we may want to de-
termine whether it is metrizable, i.e., whether it is some metric space. So the question is, under what
conditions is a topological space metrizable? You can have this question as a motivation for studying
general topology. In particular, for every new concepts and definitions we are going to learn, think
about how they are abstracted from metric space, and conversely, whether those concepts are enough
to characterize certain or all metric spaces.

5 Basis

Sometimes we want to build a topology on a set X from something that is familar to us. Or conversely,
given a topology on X, which may be too large to describe, we may wish to describe it in terms of
something smaller. This leads to the concept of basis.

DEFINITION 5.1 Let X be a set. A basis B on X is a collection of subsets of X such that
a) For each x € X, there is some B € I such that x € B;

b) Foreach x € B;NnB,, where B, B, € B, thereis some B; € Bsuchthatx € B; C B;NB,.

Recall the definition of open set in metric space: a set U is open if for every x € U we can find
some open ball B such that x € B C U. Given a basis B of X, we would like to model the situation
for metric space to generate a topology 7 on X from 5. So we have the following construction. We
let

T ={U c X | forevery x € U there is some B € Bsuchthatx € BC U}.

Proposition 5.2. 7 is indeed a topology on X. ¢

Proof. We verify T satisfies the three conditions in Definition 4.1.
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a) 3, XeT.

b) {U;} c T impliesU = |JU, € 7. Indeed, let x € U. Then x € U, for some particular
U, € T. Then by definition there is some B € B such that x € B C U,. Then x € B C U, so
that U € T as well.

c¢) LetU;,U, € T. Wewant Uy nU, € T. Let x € U; N U,. Then since x € U, as well as
x € U,, there are some B, and B, such that x € B; C U; and x € B, C U,. Since B is a basis,
we have x € B; C B; N B, C U; n U, for some B; € B. This shows that U; N U, € 7. The
case for finite intersection follows by induction. O

Compare the definition of basis with that of topology, we find that the former is easier. For exam-
ple, it is easy to see that the collection of open balls in a metric space (X, d) is a basis on X. Given
a basis on X, we can construct a topology on X and speak of “open sets”. The following proposition
further explains in what sense B would be a basis for a topology 7.

Proposition 5.3. Let B be a basis for a topology T. Then every element in T is a union of elements
in B. 1 4

Proof. Recall in Problem Set 1, we have learned that in a metric space, an open set can be expressed
as a union of open balls. Namely, for U C X, we have

U=JBxe.

xeU

The situation here is just a model of this. Let U € 7. Then for every x € U there is some B, € B
such that x € B, C U. Then

u=JB.

xeU O

Notation. We write 7 = ¢(J3) if T is generated by the basis 5.

DEFINITION 5.4 Suppose 7 and 7' are two topologies on X. If 7 C 7', then we say 7/ is
finer than T, and T is coarser than T'. T is strictly finer than T (or T is strictly coarser than
T') if the inclusion is proper. If neither topology includes the other, then we say they are not
comparable.

Basis makes it easier to compare topologies.

Lemma 5.5. Let T = 6c(B) and T' = 6(B'). The following are equivalent:
(1) TcT';

(2) Forevery x € X and every x € B € B, there is B' such that x € B’ C B. %

14



Proof. (2)= (1): LetU € T = o(B). Then given x € U, there is B € Bsuch that x € B C U. By
the assumption of (2), we have x € B’ ¢ B C U for some B’ € B'. ThenU € T' = 6(B).

(1) = (2): Note that, given B € B, since B € T, we have B € T’. Then (2) holds by the definition
of 7. O

Thus, to compare two topologies on a set X, we only need to compare their basis.

5.1 Examples

e We have mentioned that, for a metric space (X, d), the collection of open balls is a basis. Thus,
for example, the collection of open intervals (a, b) in R is a basis for (R, d), where d(x,y) =
|x — y|. Similarly, an element of a basis for (R?, d,) is an open disk, where d,(x,y) = ((x; —
yl)2 + (x, — y2)2)1/2 for x = (x;,x,),¥y = (¥;,¥,). Another metric on R? is d(x,y) =
max{|x; =y, |X,—¥,|}. Although the two metrics are different (two points in R? have different
"distances" under the two metrics), they generate the same topology on R?.

Proposition 5.6. O(d,) = O(d,). *

Proof. A drawing would be clear enough to illustrate Lemma 5.5.

O

Similarly, all of the metrics d, for 1 < p < oo generate the same topology on R". Thus, we see
that topology concerns only open sets, and would forget the geometric property of “distance”.

e For (R",d,), and its collection of its open balls B, T = ¢(/3) can be generated by a much smaller
basis: the collection of open balls with rational radius B, which is countable. Every open ball
with real radius inscribes a smaller open ball with rational radius, as it can also be inscribed by
a larger one. This shows that a metric space can have a countable basis.

e Let’s consider a different basis on R. We let B’ be the collection of all half-open intervals of
the form

[a,b) ={x : a < x < b}.
Is the topology generated by this /3’ the same as the usual one?

Proposition 5.7. 7' = 6(B') is strictly finer than the usual topology on R. .
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Proof. We still apply Lemma 5.5. For every x € (a, b), x € [x,b) C (a, b), and [x,b) € B'. On
the other hand, given a basis element [y, d) in B, there is no interval (a, b) around y such that
y € (a,b) C [y, d). m|

Notation. We denote (R, 7”) by R, and call 7' the lower limit topology on R.

6 Closed Sets, Limit Points, Convergence of Sequences, Hausdorff Spaces

Our definition of closed sets is the same as in the case for metric spaces.

DEFINITION 6.1 Let (X, 7 ) be a topological space. A C X is called closedift X \ A€ T.

Proposition 6.2. Let C denote the set of all closed set in (X, T). Then

a) 3, X €C;
b) (A eaCC=[)4,€C
AEA
o) {Ap Ay, A cC= |4 ec .
i=1
Proof.
x\(N4)=Ux\a)er
and
X\<UA,>=ﬂ(X\A,)eT.
i=1 i=1 O
Exercise 6.3. If U € T,C e C,thenU\C e T,andC\ U €C. o

Proof. By Lemma 2.1, X \(U\CO) =X \U)uXnC)=X\U)uCeCC,and X \(C\U) =
X\OuXnU)=X\CO)uU eT. O

The interior and closure of a set are defined in the same way as for metric spaces.

DEFINITION 6.4 Let (X, 7) be a topological space and let A C X. Then

1. The interior of A is defined to be A° = U{G : GCAGET).

2. The closure of A is definedtobe A= ("|{F : ACF,FeC}.

The interior of A is the biggest open set contained in A, and the closure of A is the smallest closed
set containing A. A is open iff A = A°, and A is closed iff A = A.
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Terminology. If a point x in X is in some open set U, then we call U a neighborhood of x.

The definition of limit point is a direct generalization from metric spaces.

DEFINITION 6.5 x is called a limit point of A if for every neighborhood U of x, there is some
y € AN U such that y # x. We denote the set of all limit points of A by A’.

Some authors define the closure of a set A to be A U A’. These two definitions are equivalent.
Proposition 6.6. A:ﬂ{F : ACF,FeC}=AUA. *

Proof. We first prove x € A if and only if for every neighborhood U of x, AN U # @. We prove the
contrapositive: x & A if and only if there is some neighborhood U of x such that U n A = @. Now

l.xg A= xe€ X\ A, sothatifweletU = X \ A, thenU N A = @.
2. x€U, UNA=0=>ACX\U=>ACX\U=x¢A.

Return to our proposition ,we first have ACAUA letx e A. If x € A, we are done. If x & A,
then for every neighborhood U of x, AN U # @. Any element in A N U cannot be x, so x is a limit
point of A. Conversely, by what we have just proved, it is obvious that AU A’ C A. O

Corollary 6.7. A is closed if and only if A’ C A. 'y

Some properties of closure:

Exercise 6.8. Let A, B, and {A,} be subsets of (X, 7). Prove the following:
(a) If AC B, then A C B.

(b) AUB=AUB.

(@lJAﬂc[IZ[ o

Proof.  (a) From our proof of Proposition 6.6, x € A if and only if every neighborhood of x has
nonempty intersection with A. Since A C B, it is also true that every neighborhood of x has
nonempty intersection with B. Thus x € B.

(b) First, since A C Aand B C B, AUB C AU B, which is closed. Since the closure of AU B is the
smallest closed set containing A U B, we have AU B C AU B. On the other hand, A C AU B,
sothat A C AU B by (a). Similarly, Bc AU B. Thus AU B C AU B.

(c) Since A; C |JA, foreach 4, A, c |J A, foreach 4, by (a). Then | JA, Cc [JA,.

Although it is true that A, C A, for each A and thus |JA, c |J A,, |J A, may not be closed,
since arbitrary union of close sets need not be closed. Thus the other inclusion does not hold.
An example would be A, = A, = {%},n= 1,2, .... In this case, [ J 4, = {1 11 Lo

U4, = (13,5 o hbut UA, = {0} UL, 3,5, 00,0 ), o

s g
’275’ ’2’5’
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Exercise 6.9. Let A, B, and {A,} be subsets of (X, 7). Prove the following:

(a) AnNBC An B.

® (A c) A

(c) A\BC A\ B. o

Proof. (a) ANBC Aand AnNB C B,soby(a)ANBC Aand ANBC B. ThusAnBC AnB.
The other inclusion need not hold. For example, let A = (0, %) and B = (%, 1) be two open

intervals in R. Then AN B = @, so that AN B = @ = @. On the other hand, A = [0, %] and
B=[51]sothat An B = {3}.

(b) Since (A, C A, foreach A, (A, C A, for each A, by (a). Then (A, C [ A,. Again, the
inverse inclusion needs not hold.

(c) Since B C B, wehave A\ BC A\ B. Letx € A\ B, so that x € A and x & B. For every
neighborhood U of x, AN U # @. Now by Lemma 2.2,

(A\B)nU =(ANnU)\ B.

Weknow ANU # @. But (ANU)\ B # @ either, since A N U can not be a subset of B (we
have at least x ¢ B). This shows that x € A \ B by our proof of Proposition 6.6. |

DEFINITION 6.10 Let (X, 7) be a topological space. A sequence of point (x,) in X is said to
converge to x € X if every neighborhood of x contains all but finitely many points of (x,,).

If a topology has too few open sets, it may happen that a sequence may converge to more than one
point. In the extreme case of trivial topology, every sequence converges to every point in the space!
Thus, the coarser a topology is, the easier it is for a sequence to converge; the finer a topology is, the
more difficult it is for a sequence to converge.

DEFINITION 6.11 (X, T)is called a Hausdorff space if forevery x # y € X, thereare U,V € T
suchthatx € U,y € V,and U N V = @. Namely, in a Hausdorff space, every pair of distinct
points can be separated by open sets.

e Any metric space (X, d) is Hausdorff. Indeed, let x # y € X. Then d(x, y) > 0, so if we let
r= %d(x, ¥), we then have B(x,r) N B(y,r) = @.

Observation 6.12. Let 7 and 7’ be two topologies defined on X such that 7 C 7'. If (X,7) is
Hausdorff, then (X, 7') is Hausdorff. ©

Proposition 6.13. Let (X, T) be a Hausdorff space. Then every sequence in X converges to at most
one point. 4
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Proof. Suppose x, — x. Then for any y # x, we can find some U,V € T suchthatx e U,y € V,
andU NV = @. x,, € U for all but finitely many #, so that V' can not. O

Exercise 6.14. Show that X is Hausdorft if and only if the diagonal A = {(x,x)|x € X} is closed

inX xX. O
Proof. UNnV =gifandonlyif (U XV)NA=@. m]
Exercise 6.15. Every finite point set in a Hausdorff space is closed. 9]

Proof. 1t suffices to prove each one point set {x,} is closed. But X \ {x,} is open, since for every
ye X\ {xg}wecanfindU,V € T suchthatye VCc X \U C X \ {xy}. O

DEFINITION 6.16 A topological space (X, 7") in which finite point sets are closed is called a T}
space.

Exercise 6.17. Let (X, 7 )beaT) space, and let x be alimit pointof A C X. Then every neighborhood
of x contains infinitely many points of A. 9]

Proof. Suppose forsome x e U € T, (U \ {x}) n A = {x,,...,x,} € C. By Exercise 6.3, U \
{x),...,x,} € T,and so it is a neighborhood of x not containing any point of A, a contradiction. O

Exercise 6.18. (X, 7)is aT) space if and only if for every pair of points each has a neighborhood not
containing the other. (2))

Proof. "=": Let x # y. Then X \ {x} is the open neighborhood of y not containing x, and X \ {y}
is the open neighborhood of x not containing y.

"«<": Given x; € X, we prove X \ {x,} is open. Let y € X \ {x,}. Then by assumption there is
y€Vsuchthat V n{xy} =@. Thenye V C X \ {x,}. O

7 Continuous Functions, Subbasis, Subspace Topology, Product Topol-
ogy

DEFINITION 7.1 Let (X, 7y) and (Y, 7y) be two topological spaces. A function f : X — Y is
said to be continuous if f~'(V) € Ty forevery V € Ty.
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DEFINITION 7.2 Let (X, 7Ty ) and (Y, 7y ) be two topological spaces. If there is a bijective func-
tion f : X — Y such that

(1) 7' (V) € Ty forevery V € Ty,

(2) f(U) €Ty forevery U € Ty,

then X and Y are called homeomorphic. f is called a homeomorphism between X and Y.

Exercise 7.3. If f : X — Y is continuous, then for each x, - xin X, f(x,) = f(x)inY. D)

Proof. Let f(x) € V, where V is open. Then x € f~!(V), which is also open. Thus x, € o)
for all but finitely many n. Then f(x,) € V for all but finitely many ». This proves lim,,_, ., f(x,) =

f(x). O

Warning: it is not true that for a continuous function, f(x,) — f(x) = x, — x. Example: f : R —»
R, f(x) =1forall x € R, and x,, = (=1)". f(x,) = f(x) =1 for any x € R, but that doesn’t mean
X, = X.

Exercise 7.4. f : X — Y is continuous if and only if for each x € X and each neighborhood V' of
f(x), there is a neighborhood U of x such that f(U) C V. Q)

Proof. "=>": f (f~'(V)) c V.
"&": Given V openin Y, to prove f~!(V)is openin X, let x € f~!(V). Then f(x) € V, so that
there is some neighborhood U of x such that f(U) Cc V. Thenx € U c f~' (fF(U) c f~'(V). O

Exercise 7.5. f : X — Y is continuous if and only if f~!(B) is closed in X for every closed set B
inY. O

Proof. f~'Y\V)=X\ fL(V). o
Exercise 7.6. f : X — Y is continuous if and only if for every subset A of X, we have

f(A) C f(A). o

Proof. "=>": A C f~Y(f(A) c f~'(f(A)). By continuity, f~'(f(A)) is closed in X, so that A C
F7H(f(A)). Then f(A) C f(f~I(f(A)) C f(A).

"&": Let Bbe closedin Y, we prove f~!(B) is closed in X. By assumption, for the subset f~!(B)
of X, we have f(f~1(B)) ¢ f(f~'(B)) c B = B, so that f~1(B) c f~'(f(f~1(B)) c f~1(B).
Therefore, f~'(B) is closed. o

Exercise 7.7. If f : X - Y and g : Y — Z are continuous, then there composite gof : X — Z is
continuous. O
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Proof. Given U openin Z, g\ (U)is openin Y, and g\ (U))is openin X. But e W) =
(gof)71(U). O

7.1 Subbasis

Sometimes, we wish to form a topology on a set X from something even smaller than a basis.

DEFINITION 7.8 (SUBBASIS) Let X be aset. Let S = {.5,} be a collection of subsets of X such

that
x=Js,

Using S, we can generate a topology on X as follows. First, collect all finite intersections of
elements of S, and note that the collection forms a basis. A topology 7 can be then generated
from this basis. We call S a subbasis of T, and we write T = o(S).

Forevery x € U € T, we have x € (Sl n--- nSn) c U for some S, ...,S5, € S.

n

Exercise 7.9. Let f : (X,Ty) — (Y,Ty), where Ty, = o(S) is generated by subbasis S. Then f is
continuous if and only if f~!(.S) € Ty forevery S € S. ()

Proof. We prove f is continuous. Let V' € Ty. By Proposition 5.3, V' = [J B, for some basis

elements {B,}. Then
o= (Us) =U s e,

so that f~1(V) is open if every f‘l(B,l) is open.
Now, for each B;, B, =.5|, n--- N .S, for some S, ...,S, € S. Then

By =1 (ﬂ S,-> = 7',
i=1 i=1

which is open since each f~!(.S,) is assumed to be open. O

DEFINITION 7.10 (WEAK TOPOLOGY) Let {(Y, 7))} ,cA be a family of topological spaces, with
functions f, : X — Y. Let

S, ={f]'MVeT.

Then S = {S,} e, is a subbasis for X. The topology generated by this subbasis, 7 = ¢(S), is
called the weak topology on X with respect to { f;},ca. It is the coarsest topology on X such
that each f is continuous.

e Let X be aset, (Y, 7y) be some topological space, and let f : X — Y be a constant function,
ie, f(x)=ce€Y forall x € X. Then forany U € Ty,

_ ifc g U;
=492 !
S {X ifceU.

Thus any constant function on X generates the trivial topology {@, X} on X.
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e Let f : X — Y has only two distinct values {c;,c,} in Y. Then for any U € Ty,

fNe)) ife; €U,c, ¢ U,;

fNey) ife,€U,¢; ¢ U;
ife;,cp € U;

X ifej,cp €U.

)=

Note that the two sets f~!(c;) and f~!(c,) are disjoint in X. Let A = f~!(c,), then f~!(c,) =
X \ A. The weak topology generated by the function f is then {@, X, A, X \ A}. It is the
coarsest topology with respect to which f is continuous. The function f divides X into two
disjoint "components".

e Similarly, for f : X — Y that takes three distinct values {c, ¢, ¢3} in Y, the coarsest topology
with respect to which f is continuous is {@, X, A, X \ A}, 4,, X \ Ay, A3, X \ A3}, where
A =f ‘l(ci) fori = 1,2, 3. Similar construction can be made for any function that has » distinct
values on X. Note that start from n = 4, it is not enough to only include A; and X \ A, into the
topology; for example, forn =4, A, UA, = (X \ A3) N (X \ Ay) = X \ (A3 U Ay).

e Equivalently, what we are doing above can also be seen as partitioning X into disjoint sets
A, Ay, ..., A,, and we seek the coarsest topology on X relative to which each A, is open.

DEFINITION 7.11 (SUBSPACE TOPOLOGY) Let (X, 7) be a topological space, and let S C X.
1.5 -X

is the inclusion map defined by (x) = x € X for x € S. The subspace topology Tg on S is
defined to be the weak topology on S' with respect to 1.

From the fact that = }(U) = S N U, Eq. (15) and Eq. (16), we see
Tg={SNnU :UeT}.

The subspace topology is the coarsest topology on S for which 1 is continuous. If we endow .S with
some different topologies, then the seemingly trivial map  may fail to be continuous. For example, if
we endow S with the trivial topology {@, .S}, then : may not be continuous.

Observation 7.12. Note that intersection communicates with Cartesian product, namely,
n(me)-m(nw)
B a a B

(U, X V)0 Uy X V) = (U N Uy X (VN V).

Thus,for example,

Let {X;}7, be a sequence of sets. If U; C X, U, C X, then

(U]XX2XX3X"')n(Xle2XX3X"')=U1XU2XX3X“'. ®
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DEFINITION 7.13 (PRODUCT TOPOLOGY) Let {(X; 7;)},ca be a family of topological spaces.
The projection with index 4, p,, , is the function

Pl H Xi= X5,
e

that maps an element of [] X to its 4, component in X 4+ The product topology on I1X,1is
defined to be the weak topology on [] X, with respect to {p,} ,c4. It is the coarsest topology in
which each projection is continuous.

We illustrate the definition using a sequence of topological spaces {(X;, 7;)}2,. Let T be the
product topology on H:’il X;. To make each p; continuous, we first put { pi‘l(U ), U € T;} for all i into
T . For example, for U, € Tl,pl_l(Ul) =U; XX, XX3%-;forU, € Tz,pgl(Uz) = X XU; X X3X:+-.
Then we form the finite intersection of them to obtain our basis for 7. For example, according to our
observation,

P UD NP U N N p (U) =Up XUy X o XU, X X,y X Xpg X oo

Thus, for every U € T, and every x € U, there is a basis element H;’i Ui such that

(o]
xe[]u cu,
i=1

where U; # X; for all but finitely many i.

Exercise 7.14. Let A, C X, for each A € A. Then

T4 =14 o

Proof. Since

<HUA) n <HA1> = H(U,mAA),

(ITU;) n(ITA,) # @ifandonly if U, n A, # @ for each 4 € A. O
Exercise 7.15. If each X is a Hausdorff space, then [],., X, is Hausdorff. )
Proof. Let f # g € [],ea X,- Then f(4y) # g(4¢) for some 4. Since X, 1s Hausdorff, there is

some open sets U, V in X such that f(4,) € U,g(4y) € V,andU NV = @. Then f € [[U,,
where U, = X, if 1 # 4y; g € [[V,, where V, = X, if 1 # A, and

To see this, if h € ([TU,) n ([TV;) =1 (U, nV,), then h(4y) € @, which is absurd. mi

Theorem 7.16. Let (f,) be a sequence in [],cp X3, where f, = (f,(D) > and let f = (f(A)en
be a point in this product space. Then f, — f if and only if f,(1) = f(4) in X, for each A. O
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Proof. First let f, — f in [[ X,. Then every neighborhood of f contains all but finitely many
fu- Given any A, and any neighborhood U, of f(4g), [[U;, where U; = X, for 4 # A, is a
neighborhood of f, so that f, € [J U, for all but finitely many n. Then f,(4,) € U,, for all but
finitely many n. This proves f,(4y) = f(4g).

Now suppose f,(41) = f(4) in X, for each 4. Does f, converge to f? For each neighborhood
U of f, there is a basis element B such that f € B C U. Without loss of generality, and for the
purpose of demonstration, we assume B = U, X --- XU, X H/#/h,---,izv X,. Then f(4)) € U, ,

f(A) e U,lz, ...... ,and f(Ay) € U}‘N' Since f,(A1) = f(A)in X, for each A, we have f,(4;) € U,ll
for all but finitely many n, ... ... s [u(An) € U, forallbut finitely many n. Then f, = (fn(i))le/\ €B
for all but finitely many ». This proves f, — f. |

We mention that there is a second proof for the “only if " part. Since each projection p, is contin-
uous, we have by Exercise 7.3

lim £, = Tim p,(/,) = p; (lim £,) = p,(N) = /) (17)
for each A € A.

o Let R[#4] denote the set of all real-valued functions defined on the interval [a, b]. Endow R[]
with the product topology. Then (f,,) converges pointwise to f if and only if f, = f in RI%%],

Theorem 7.17. Let f : (Y,T) = [],cp X, be given by f(y) = (fl(y))/leA, where [, 1Y — X, is
the A’s component of f. Then f is continuous if and only if each f is continuous. O

Proof. Note that
fa=pyof,

so that if f is continuous, then each f is continuous, by Exercise 7.7. Conversely, suppose each f;
is continuous. To prove f is continuous, we only need to verify that f~! ( p;l(U )) € 7T for all A and
all U open in X ;, by Exercise 7.9. But

(P ) =N = MU ET. o

Next we introduce the box topology, which is in some sense "dual" to the product topology.

DEFINITION 7.18 (BOX TOPOLOGY) Let {(X,T,)},c5 be a family of topological spaces.

B:{HU“UAETA}

AEA

isabasison [[ X,;. T = o(B) is called the box topology on [] X ;.

Theorem 7.19. Let {(X, T,)},ep be a family of T, spaces, and let T be the box topology on [] X .
Suppose (f,) is a sequence in [[ X, and f € [[ X ;. Then f, — f in ([] X, T) if and only if

1. f,(A) = f(d)in X, for each A;
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2. 3A finite, f, = f on A\ A, eventually. O

Proof. "«": Let U be a neighborhood of f. Then there exists a basis element [[ U, such that f €
J1U, c U, where each U, is an open set in X ;. For all those A € A \ A, there is some N € N such
that f,(4) = f(4) € U, for all n > N. Now suppose A, has k elements. Then since f,(1) = f(4)
for each 1 € A,

AIEA():}HNIGN, fn(ﬂl)EUﬂl V}’IZNI,

€N >IN, €N, f(d) €U, Vn=N,

i €Ng = INLEN, f,(R)EU, VnxN,.
Let N/ = max{N, N,,..., N, }. Then f, € [[ U, for all n > N’. This proves f, — f.

"=": Box topology is finer than the product topology, so that in particular, each projection p, is
continuous. Thus f, — f implies f,(4) = p,(f,) = p,(f) = f(4), asin Eq. (17).
Now, is it necessary that 3A finite, f, = f on A \ A, eventually? Suppose, to the contrary, that

VA, finite, f,, # f on A \ A, infinitely often.

Pick n; € Nand 4, € A such that 1, (1)) # f(4;). Then there is a neighborhood V; of f(4,)
in X, suchthat f, (4;) & V, . Similarly, pick n, € N and 4, € A such that f, (4,) # f(4,). Then
there is a neighborhood V) of f(4,) in X, such that f, (4,) & V, . Continuing this way, we obtain
a sequence of open sets {V; .V, ,...}. LetV = [1V,, where we let V, be an arbitrary neighborhood
of f(A)if A & {4, 4,,...}. Then f, &€ V for infinitely many n € N, contrary to the assumption that
fu— f. o

8 Connectedness

DEFINITION 8.1 Let (X, T) be a topological space. It is called disconnected if there is a subset
A & {@, X} suchthatboth A, X \ A € T. It is called connected if it is not disconnected.

Thus if X is disconnected, it can be written as a disjoint union of two open subsets.
Let

C={ACX|X\AeT}

be the collection of all closed subsets in X. Since X \ A € 7 ifandonly if A € C, and A € 7 if and
only if X \ A € C, we have both A, X \ A € T if and only if both A, X \ A € C.

Corollary 8.2. Let C denote the collection of closed subsets of (X, T). X is disconnected if and only
fenT #{@,X}. )
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Table 1: Duality of Box Topology and Product Topology

Basis for product topology: B= {H U,|U,eT,VAeA; A finite,U; = X, on A\ /\0}
AEA
Convergence in box topology: fo— FOff f,(A) = f(H VYA A; TAfinite, f, = fon A\ A
Basis for box topology: B= {H U,: U,eT, VYie A}
AEA
Convergence in product topology: fo—= fift f,(A) = f(A) VieEA

Corollary 8.3. X is disconnected if and only if there exists subset A &€ {@, X } such that

ANX\A)=Q@and ANX\A=Q. Py

Proof. If X is disconnected, then both A, X \ A € C N T so that the desired condition holds since
both sets are closed. Conversely, from A N (X \ A) = @ we have A C A so that A € C, and from
ANX\A=gwehave X \ A C X \ A,sothat X \ A € C as well. O

Theorem 8.4. Let f : (X,Ty) — (Y, Ty) be a continuous function that is surjective. If Y is discon-
nected, then X is disconnected. o

Proof. By continuity, if both A,Y \ A € Ty, thenboth f~!(A)and f~1(Y \ 4) = X\ f~1(4) € Ty.O

Corollary 8.5. Let f : (X,Ty) = (Y, Ty) be a continuous function. If X is connected, then f(X) is
connectedinY.

Proof. This is just the contrapositive of Theorem 8.4. O

Corollary 8.6. (X,7T) is connected if and only if every continuous function f : X — {0,1} is
constant, where {0, 1} has the discrete topology. o

Proof. {0,1} with the discrete topology is not connected, so that if X is connected, f cannot be
surjective. Conversely, if both A and X \ A € T for some nontrivial A C X, then the function defined
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by

1 ifxe A,
f(x)= .
0 ifxe X\ A.

is continuous and not constant. O

Corollary 8.7. Let {A,} be a collection of connected subspaces of X and assume (A, # @. Then
U A, is connected. 'S

Proof. Letp € (A, andlet f : |JA; — {0, 1} be continuous. Then since each1,: A; — X is
continuous, each for; : A; — {0, 1} is also continuous, thus constant, so that fo1,(x) = foi1,(p) =
constant for all A and all x € [ J A,. Thus f is constant on | J A, which proves | J A, is connected. O

Corollary 8.8. If A is connected in X, then A is also connected in X. ®

Proof. Let f : A — {0,1} be continuous. Then by Exercise 7.6, f(A) C f(A). Since foi, : A —
{0, 1} is continuous, f(A) is a singleton. Then f(A) is also the same singleton, which implies that
f(A)isasingleton. This proves every continuous f : A — {0, 1} is constant. Hence A is connected.00

Proposition 8.9. If X and Y are connected, then X XY is connected. *

Proof. Fix a point (a,b) in X X Y. Then

XXY = U({x}xY)U(Xx{b}).

xeX

Each ({x} X Y) U (X x {b}) is connected, since the two connected spaces have (x, b) in common.
Also, all of them contain (a, b), so that their union is connected by Corollary 8.7. O

From Proposition 8.9, a finite product of connected spaces is connected, by induction.

Proposition 8.10. Let {X,},c5 be a family of connected spaces. Then X = [] X, is connected in
the product topology. ¢

Proof. Fix apoint f in [] X,. For any A, C A finite, let

Xy, =t [ X180 =rforag Ay

Each X, is homeomorphic to a Cartesian product of finite connected spaces, hence connected. Since
they all have the point f in common, there union

is connected. Now I claim



so that connectedness of [ X, follows from Corollary 8.8. Let A € [] X, be an arbitrary point, and
let U be a neighborhood of A. Then there is a basis element [ U, such that h € [[ U, c U. Further,
there exists some finite A, in A such that U, = X, for all A € A \ A,. Then the point #’, where

() =

h(A) A€ N,
() A€ A\ A,

isin X Ao This proves every neighborhood of & has a nonempty intersection with [ J AgCA finite X ), 80

that its closure is indeed [] X, by Proposition 6.6. O

Theorem 8.11. A real interval [a, b] is connected. The real line R is thus connected. By Proposi-
tion 8.10, R" is connected for any n € N. o

Proof. Suppose [a,b] = AU B, where A and B are open and disjoint. Let x = sup A. Thenis x € A
or x € B? If x € A, then there is some basis element (i, v) such that x € (u,v) C A. Then since
Xx < v, x is not an upper bound of A, a contradiction. If x € B, then there is some basis element
(', v") such that x € (', v") C B. Note since BN A = @, we have (u’',v") N A = @. Then v’ would
be an upper bound of A smaller than x, contradict to x being the least upper bound. O

On the other hand, @ is not connected. The set U = {x € Q | x < \/5 } is open in Q, while its
complement Q\ U ={xe€ Q| x > \/5} is also open in Q.

Theorem 8.12 (Intermediate Value Theorem). Let (X, T) be a connected space, and let f : X —
R be continuous. Suppose f(x,) # f(x,) for some x|,x, € X, and with loss of generality suppose
f(x)) < f(xy). Then for every r € [ f(x,), f(x,)] CR, there is some x € X such thatr = f(x). ¢

Proof. Suppose no such x exists. Then for the openset U = f~!((—o0, 7)) in X, its complement would
be X \ U = f~!((r, +0)), which is also open in X. This contradicts the fact that X is connected. O

Theorem 8.13 (Brouwer’s Fixed-Point Theorem, One Dimension). Every continuous f . [0,1] -
[0, 1] admits a fixed point, i.e., a point x € [0, 1] such that f(x) = x. O

Proof. Since the range of f is [0, 1], we have f(0) > 0and f(1) < 1. If f(0) =0or f(1) =1, we are

done. Otherwise, f(0)—0 > 0 and f(1) — 1 < 0, so that applying the Intermediate Value Theorem to
the continuous function f(x) — x, we conclude that there is x € [0, 1] such that f(x) — x = 0. O

8.1 Path Connectedness

DEFINITION 8.14 Let (X, 7) be a topological space. Given two points x,y € X, A path from
x to y is a continuous map f : [0,1] — X such that f(0) = x and f(1) = y. X is called
path-connected if there is a path between every pair of points in X.

Proposition 8.15. If (X, T) is path-connected, then X is connected. ¢
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sin(1/x)

Figure 1: Topologist’s sine curve

Proof. Suppose thereis A € T suchthat X \ A€ 7. Pickxe Aandy e X \ A. Let P = f([0,1])
be the image in X of a path fromxtoy. ThenU = PnAand P\ U =P n (X \ A) would be both
in 75, the subspace topology for . But P is connected by Theorem 8.11 and Corollary 8.5. O

Example 8.16 (Topologist’s Sine Curve). Consider f : (0,1] - R? given by f(x) = (x, sin(1/x)).
Its image is

S = {(x,sin(1/x)) | x € (0, 1]}.

Since (0, 1] is connected, and f is continuous on (0, 1], .S is connected in R? by Corollary 8.5. Its
closure

S = {(x,sin(1/x)) | x € (0,11} U ({0} x [-1,1])

is thus also connected, by Corollary 8.8. S is called the (closed) topologist’s sine curve (Fig. 1). <

Proposition 8.17. S is not path-connected. .

Proof. This is essentially the fact that the function

_Jsin(1/x) x € (0,1]
o= {0 x=0

defined on [0, 1] is not continuous. This is because we can find a sequence (x,) in [0, 1] such that
x, — 0 but f(x,) does not converge. To construct a specific example, let

1
Xn = Qn+)r
2
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so that

f(x,) =sin @n+ Dz _ {1 n even,

2 —1 nodd.

Any other function f : [0,1] — S such that £(1) € S would fail to be continuous for similar
reasons, so that there does not exist a path from (0, 0) to a point in S. .S is thus not path-connected.n

DEFINITION 8.18 (PATH COMPONENTS) Let (X, 7) be a topological space. Define an equiva-
lent relation by setting x ~ y if there is a path from x to y. The equivalent classes are called the
path components of X.

e There are two path components of the topologist’s sine curve .S. One is S, and the other is
{0} x [—1, 1]. Note that .S is open but not closed, while {0} x [—1, 1] is closed but not open.

DEFINITION 8.19 (COMPONENTS) Let (X, 7) be a topological space. Define an equivalent re-
lation by setting x ~ y if there is a connected subspace of X containing both x and y. The
equivalent classes are called the (connected) components of X.

Proposition 8.20. Each component in X is closed. ¢

Proof. Let A C X be an arbitrary connected subspace. Then x ~ y for any x,y € A, so that A falls
in a single component. Thus, components are maximal connected subspaces in X. Since the closure
of a connected subspace is connected by Corollary 8.8, each component is closed. O

e If X has only finitely many components, then each of them is also open in X. For example, let
X=C,uCGuU--UC, C,U:--UC,is closed, being a finite union of closed subsets. Hence
C, = X\ (C,U---UC,) is open. On the other hand, if X has infinitely many components, then
they may not be open. For example, the components of Q are one-point sets {g}, and each such
singleton is not open.

DEFINITION 8.21 (QUASICOMPONENTS) Let (X, 7) be a topological space. Define an equiva-
lent relation by setting x ~ yif thereisnox € A € T suchthat y € X \ A € 7. The equivalent
classes are called the quasicomponents of X.

Proposition 8.22. Each quasicomponent in X is closed. ¢

Proof. Let x € X and let [Q, ] denote the quasicomponent that contains x. Then it is easy to see that

[OQ.]={yeX|noxeAeCNT suchthaty & A}.
Thus, y € [Q,]ifand only if y € Aforall A€ Cn7T. Thus

[Q.0= () 4 (18)
XEA
AeCnT
Each such A is closed, so that their intersection is closed. ]
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Observation 8.23. Let x € X, and let [P, ], [C,] and [Q,] denote the path component, component,
and quasicomponent that contain x, respectively. Then

[Pl C[C,] C Q] ®

8.2 Local Connectedness

DEFINITION 8.24 (X, T) is locally connected at x if every neighborhood of x contains a con-
nected neighborhood. X is called locally connected if it is locally connected at each of its points.

8.2.1 Examples

e [t is immediate that, if 7 = o(J3), where each B € B is connected, then (X, 7) is locally
connected.

o A =1[1,2]U[3,4]is locally connected, but not connected.

e The topologist’s sine curve is connected, but not locally connected. No connected neighborhood
is contained in any neighborhood of (0, 0).

o Q is neither connected nor locally connected.

DEFINITION 8.25 X is locally path connected at x if every neighborhood of x contains a path
connected neighborhood. X is called locally path connected if it is locally path connected at
each of its points.

o A =1[1,2]U][3,4]is locally path connected, but not path connected.

o Consider this infinite broom. It is path connected, but not locally path connected. Every neigh-
borhood of p would enclose infinitely many disjoint "branches".

Proposition 8.26. (X, 7)) is locally connected if and only if for every U € T, every component [C, ]
inU is in T. In particular, if X is locally connected, then each component of X is open. ¢
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Proof. 1tis clear that if forevery U € T and [C,] C U, [C,] € T for every x € U, then X is locally
connected. Every x € U € T contains a connected neighborhood (which is [C, ]).

Conversely, suppose (X, 7) is locally connected. Let U € T, and let [C,] C U be a component of
U.Ify € [C,], thenthereexists V € T suchthaty € V' C U and V is connected. Since V' N[C,] # @,
we have V' C [C,]. This proves [C,] is open. O

Proposition 8.27. (X, T) is locally path connected if and only if for every U € T, every path com-
ponent [P.] in U is in T. In particular, if X is locally path connected, then each path component of

X is open. *
Proof. Similar to the proof of Proposition 8.26. O
Proposition 8.28. If X is locally connected, then [C,] = [Q,] for every x € X. ¢

Proof. By Observation 8.23, [C,] C [Q,]. We prove [Q,] C [C,]. By Proposition 8.26, [C,] € T for
every x € X. [C,] is also in C by Proposition 8.20, so that [C,] € C n 7. Then referring to Eq. (18),
we see that

[Q,0= () Acic.

x€EA
AeCnT O

Proposition 8.29. If X is locally path connected, then [P,] = [C,] for every x € X. .

Proof. By Observation 8.23, [P, ] C [C,]. Suppose [P,] € [C,]. We let P be the collection of other
path components in X that have nonempty intersection with [C, ], i.e.,

P={[P]I[P]#I[P] [PIn[C]#a}.

Since each [P, leP is connected, [Pyl C [C,]. Thus,
cl=wau| | mif.
(P,leP

where U[p ]ep[Py] = [C,]\ [P,] is open since each [P,] is open by Proposition 8.27. We arrived at
y
a contradiction that [C, ] is disconnected. m]

Corollary 8.30. If X is locally path connected, then [P.] = [C,] = [Q,] for every x € X. ®

9 Compactness

We generalize the notion of compactness in metric spaces to general topological spaces.
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DEFINITION 9.1 Let (X, 7) be a topological space. A subset A of X is said to be compact if
every open cover of A has a finite subcover. Namely, for any collection {U;},;c, C 7 such that
A C [J,en U, there exists A C A finite such that

Ac|Ju,clus.

AEA AEA

Observation 9.2. If 7 = o(B), then to check X is compact, we may only need to check every open
cover by elements in /3 has a finite subcover. ©

Theorem 9.3. The real interval [a, b] is compact in (R, T ), where T is the usual topology. <o

Proof. Let {U,},cn C T suchthat [a,b] C |J,c, Uj, and let

A={x€lab]|a,x]C U U, for some A,y C A finite }.
AEA

Let xy = sup A. Is xy = b? Suppose x; < b.

Then since x, € U, for some U;, € T, there is a basis element (x, — €, x, + €) such that
Xg € (xg —€,x9+€) CU,. Since x, — € is not an upper bound for A, there is some z € A such that
Xg—€ < z < X, so that [a, z] C UEAO U, for some A, C A finite. Also, pick some y € (xg, X + €).
Then

la,y] C < U U/1>UU/V,

AEA
so that x; < y € A, contrary to the fact that x is an upper bound of A. O
Proposition 9.4. If (X, T) is compact, then any A € C is compact. ¢

Proof. Let O be an open cover of A. Then since X \ A € 7, OU (X \ A) is an open cover of X. By
compactness of X, there is some finite (O’ that covers X. Then O \ (X \ A) is a finite cover of A. O

Proposition 9.5. If (X, T) is Hausdorff, then any compact subspace of X is closed. .

Recall we have proved in the lecture that any compact subset of a metric space is closed and bounded.
Note how the proof here is similar to the proof for metric space.

Proof. Let A be compact; we prove X \ A is open. Pick x, € X \ A. Then for every y € A, there

are Uyand V,, € T suchthat xy € U, y € V), and U, NV, = @. {V,}, 4 is an open cover of A; by
compactness of A, A C U?:l V, =:V for some finite number of points y,, ..., y, in A. Then

n
U :z(ﬂUyl)nV:@.
i=1

This proves that for every x € X \ A, we can find a neighborhood U of x such that x e U C X \ A.
Thus X \ A is open, so that A is closed. O
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Proposition 9.6. Let f : (X,Ty) — (Y,Ty) be continuous. If A C X is compact, then f(A) is
compactinY. 4

Recall the first question in Problem Set 2.

Proof. Let
fwclyw,

AEA

where {V;},cx C Ty. Then

Ac @yt (U V4> = op.
AEA AEA

A compact = A C UAeA0 FWV) € U ep f71(V)) for some Ay C A finite. Then

fA)c f(U f‘l(Vp) =Jrr'on)c U

AEA A€A, AEA, O
Corollary 9.7. If X is compact, then any continuous function f . X — R is bounded. o
Proof. f(X)is compact in R, hence bounded. O

Theorem 9.8 (Extreme Value Theorem). Let f : X — R be continuous. If X is compact, then
inf f(X) € f(X)andsup f(X) € f(X). o

Proof. f(X)is compact in R, hence closed. O

We next prove the Uniform Continuity Theorem, which says that a continuous function on a com-
pact metric space is uniformly continuous. To prove the theorem, we will first need a lemma, the
Lebesgue Number Lemma. Recall that the diameter of a set E C X is defined to be

diam(E) = sup{d(x,y) | x,y € E}.

Lemma 9.9 (Lebesgue Number Lemma). Let (X, d) be a compact metric space. Then given any
open cover O of X, there is some & > 0 such that

VE C X, diam(E)<é = E C U forsomeU € O.

The number 6 is called the Lebesgue number for O. %

Proof. For any x € X, there is some U(x) in O such that x € U(x). Then there is some open ball
B(x, €,) around x such that x € B(x,e,) C U(x). The collection of open balls

{B(x,€ex/2)} ex
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is thus an open cover of X, so by compactness
X C B(xy, €, /2)U - U B(x,, ¢ /2)

for some finite set of points x, ..., x, in X. Let 6 = min{e, /2,...,¢€, /2}. We claim 6 is the desired
Lebesgue number. Let E C X such that diam(E) < 6, and fix a point p € E. Then p € B(x;, €, /2)
for some x;, so that d(x;, p) < €, /2. Let x € E. Then

d(p,x) <diam(E) < 6 < exi/2,

so that
d(x;,x) <d(x;,p)+d(p,x) <€, [2+¢€, [2=¢,.

This shows
E C B(x;, 6, /2) C U(x)). o

Theorem 9.10 (Uniform Continuity Theorem). Let f : (X,dy) — (Y,dy) be continuous. If X is
compact, then f is uniformly continuous. O

Proof. Givene >0, {B(y,¢/ 2)} ey s an open cover of Y. Since f is continuous,

{7 (BG»€/2)} ey

is an open cover of X, which admits a Lebesgue number 6 > 0 by Lemma 9.9. Then given any
X1, X, € X such that dy(x;,x,) < 8, x;,x, € f~ 1 (B(y,€e/2)) for some y € Y. Then f(x,), f(x,) €
B(y.¢/2). so that dy (f(x,). f(x,)) < €. o

Proposition 9.11. If X and Y is compact, then X X Y is compact. ¢

Proof. Let O = {U; XV, },c be an open cover of X XY by basis elements. For each (x,y) € X XY,
there is some U (x, y) X V' (x,y) € O such that (x,y) € U(x,y) X V(x,y). Since {x} X Y is compact,
we have

x)xY c| UGy xvixy)
i=1

for some y;,...,y,in Y. Put

UX

n
RLEEN
i=1

and note that U, XY C U?:l U(x,y) X V(x,y;). Now {U, XY}, .y is an open cover of X X {y} for
any y € Y, so by compactness

m
Xx{y}cUijxY
j=1

for some x4, ..., x,, in X. Then
m
X XY C ij xXY.
j=1
Since each Ux/_ X Y can be covered by finitely many elements in (9, X X Y can be covered by finitely
many elements in O. O
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Corollary 9.12. A finite product of compact spaces is compact. In particular, [a, b]" is compact in

R”. [
Proof. Proposition 9.11. O
Corollary 9.13. A C R" is compact if and only if it is closed and bounded. )

Proof. We have proved in class that a compact subset of a metric space is closed and bounded. Con-
versely, if A is closed and bounded, then it is contained in [-N, N]” for some N > 0, which is
compact by Corollary 9.12. Since a closed subset of a compact set is compact, A is compact. O

It turns out that an arbitrary product of compact spaces is also compact in the product topology.
This is the Tychonoff’s Theorem. It is equivalent to the axiom of choice. To prove the theorem, we
first need a lemma, the Alexander Subbasis Theorem.

Theorem 9.14 (Alexander Subbasis Theorem). Let (X, T) be atopological space, where T = 6(S)
is generated by a subbasis S. Then X is compact if and only if every open cover from S has a finite
subcover. o

Proof. Suppose every open cover from S has a finite subcover, yet X is not compact. By Observa-
tion 9.2, there is some open cover by the the basis elements in 3(S), generated by S, that has no finite
subcover. Let J be the collection of all such covers, and note that set inclusion is a partial order on
J, where an upper bound for each chain is the union of all the covers in the chain. By Zorn’s lemma,
J has a maximal element @ = {U,},c,. O has no finite subcover of X, but © U {U’} for any other
U’ € B(S) would have a finite subcover.

Pick an arbitrary U; € O, sothatU; = S, n---N.S, for some S}, ..., S, € S. Then S; € O for at
leastone i € {1,...,n}. Forif not, OU {5}, ...,OU {S,} would all have a finite subcover of X, so
that O has a finite subcover for X \ .S, for each i = 1. ..., n. But then O would have a finite cover for

X\U4=X\<ﬂS,->=U<X\S,->,

i=1 i=1

and thus for X = (X \ U,;) U U,, a contradiction.
Thus, forany U; € O, thereis U, C S, € O for some .S, € S. Then

xclJu,clJs

AEA AEA

By assumption, the cover {5, } ,c, has a finite subcover. But since {5} ,co C O, thisimplies O & J,
a contradiction. m|

Theorem 9.15 (Tychonoff’s Theorem). Let {(X;,T,)} e be afamily of compact spaces. Then [, X;
is compact in the product topology. O

Proof. Let
O={p;' (U}) : a € A(D), 1 € A}
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be an arbitrary open cover of [],., X, by subbasis elements. If for some 4 € A,
{U] :a € A}
covers X ;, then by compactness of X,
a a,
X,cU,'v--uU,

for some finite ay, ..., a, € A(4). In this case

[1xcrt (U ueupy (U).
AEA

and we are done. If for all A € A, none of {U/‘l" :a € A(A)} covers X, then we can select

rae |J us

aEA(A)

for each 4 € A, obtaining an f € [],c, X,. But then f & O, contrary to the assumption that ©
covers [],cp X O

Our definition of compactness is in terms of open sets. An equivalent definition can be formulated
using closed sets.

Proposition 9.16. (X, 7T) is compact if and only if for every {C,} ;ep C C,

ﬂ C, # @ for any finite Ay CA = ﬂ C,#@.
AEA, AEA ¢

Proof. X CU;ea Uy = X C U ea, U, for some Ay C A finite if and only if

@:X\X:)X\(UUA)=H(X\U1)

AEA AEA
Y
@ = m (X \ U,) for some A C A finite.
AEA,
Now take the contrapositive. O
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DEFINITION 9.17 Several other notions of compactness:
1. A space X is said to be o-compact if it is the union of countably many compact sets.
2. A space X is said to be Lindeldf if every open cover of X has a countable subcover.

3. A space X is said to be sequentially compact if every sequence in X has a convergent
subsequence.

4. A space X is said to be countably compact if every countable open cover of X has a finite
subcover.

5. A space X is said to be limit point compact if every infinite subset of X has a limit point.

6. A space X is said to be pseudocompact if every continuous real-valued function onX is
bounded.

Observation 9.18. Compact = o-compact = Lindelof; compact = countably compact. ©®

Exercise 9.19. X is countably compact if and only if every nested sequence of closed nonempty sets

C, D C, D --- has nonempty intersection. o
Proof. Proposition 9.16. O
Exercise 9.20. If X is sequentially compact, then it is countably compact. 9]

Proof (Proof 1). Let C; D C, D --- be a nested closed nonempty sets in X, and select x, € C, for
each n. By assumption, (x,) has a subsequence (xnk) that converges to x € X. Consider an C,, which
contains {x; : i > n}. Then for each neighborhood U of x, U N C, contains infinitely many points, so
thatx € C, = C,.. Thisis true foralln € N, so that x € C, foralln € N. We thus have x € (-, C,.0

Proof (Proof 2). Let {U,},cn be a countable open cover of X, and suppose it has no finite subcover.
Then we can select x, & J_, U, for each n € N, obtaining a sequence (x,) in X. Since X is
assumed to be sequentially compact, (x,) has a subsequence (x,, ) that converges to some x € X.
Since {U, },ey covers X, we have x € U,, ¢ |JI_, U,, for some m € N. But |J_, U,, would contain
infinitely many items of (x,,), contrary to our selection of the sequence (x,,). O

Exercise 9.21. Every countably compact space X is limit point compact; the converse holds if X is

T,. o

Proof. Suppose first that X is countably compact. Let A C X be an infinite set. Suppose, to the
contrary, that A has no limit point. Then any subset of A has no limit point, so that any subset of A is
closed. Pick a sequence of distinct points (x,,) in A. Then {O, },cn, Where O, = X \ {x,, x,;1,...},1s
a countable open cover of X. But this open cover can not have a finite subcover, for if X C Ufl\]:l o, =
O\, then we would have X C X \ {xy, X, ...}, Which is absurd.

Suppose now X is limit point compact and 7. If there is some countable open cover {U,},,cn
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of X that does not have a finite subcover, we can pick x, € X \ (U; U - U U,) for each n € N.
Then the infinite set A = {x, : n € N} would not have any limit point: any x € X lies in some
Uy, so in particular intersects A at only finitely many points, so that it can’t be a limit point of A by
Exercise 6.17. O

Exercise 9.22. Every countably compact space X is pseudocompact. D)

Proof. Let X be countably compact, and let f : X — R be a continuous real-valued function. Then
X clUz,0, where O, = {x € X : |f(x)| < n}. A finite subcover would mean X C Ui\;1 0, =
Oy, sothat |f(x)| < N forall x € X. O

Theorem 9.23. For a metric space (X, d), 3, 4, 5, 6 in Definition 9.17 are all equivalent to compact-
ness. o

Proof. By Exercise 9.20, Exercise 9.21, and Exercise 9.22, to prove the theorem, it remains to prove
1. limit point compact implies sequentially compact for (X, d);
2. pseudocompact implies sequentially compact for (X, d), and

3. sequentially compact implies compact for (X, d).

Proof (Limit point compact = sequentially compact). Suppose (X, d) is limit point compact, and let
(x,) be a sequence of distinct points in X. The infinite set A = {x, : n € N} will then have a limit
point x € X. Since (X, d) is Hausdorff and hence T, B(x, €) N A contains infinitely many points of
A for any € > 0. Then we can pick X, € B(x, %) for k = 1,2, ..., thus obtain a subsequence (xnk)
that converges to x. O

Proof (Pseudocompact = sequentially compact). Suppose (X, d) is pseudosompact, and let (x,,) be
a sequence in X that does not have a convergent subsequence. Then A = {x, : n € N} is discrete, so
for every x,, there exists €, such that B(x,,€,) N B(x,,, €,,) = @ for all n # m. Define f : X - R by

fx) = {n <1 - @) X € B(x,, €,);
0

otherwise.

It is easy to see that f is continuous but not bounded. O

Proof (Sequentially compact = compact). Suppose (X, d) is sequentially compact. Then

(a) (X, d) satisfies the Lebesgue number lemma.

Suppose not; then for some open cover @ of X, and for every n € N, there is E, C X with
diam(E,) < % such that E, ¢ U for any U € O. Pick x,, € E, for each n € N. By assumption,
the sequence (x,) has a subsequence (x,, ) such that x, — x, for some x, € X. x, € U for
some U € O, so there is some € > 0 such that x, € B(x(,€) C U. Since diam(E,) — 0, there
is Ny € N such that diam(E, ) < % for n; > Ny; and since x,, — X, there is N, € N such
that d(x,, . xg) < 5 form > Ny. Let N = max{N, N,},m > N, and letx € E, . Then
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Figure 2: Stereographic projection of S! \ { N} to the real line.

€ €
d(x,xy) < d(x,xnk) + d(xnk,xo) < 5 + 5 =e,

so that Enk C B(x,¢) Cc U, a contradiction.

(b) (X,d) is totally bounded.

Suppose not; then there exits € > 0 such that X cannot be covered by finitely many elements
in {B(x,€)},cx. Let x; be an arbitrary point in X; we can pick x, € X \ B(xy, €). Similarly,
we can pick x3 € X \ (B(x},€) U B(x,, €))......Continuing this way, we obtain a sequence (x,,)
where x, € X \ (B(xy,€) U B(x,,€) U --- U B(x,,_;,€)). Then (x,)) cannnot have a convergent
subsequence, since d(x,,x;) > efori=1,...,n—1.

Let O be an open cover of X, and let 6 > 0 be a Lebesgue number for . Since X is totally
bounded, X C U:’zl B(x;,6/3) for some x,,...,x, € X. Since each B(x;,5/3) has diameter less
than 6, B(x;,6/3) cU; € O,i=1,...,nforsome Uy, ..., U, € O. Then

Xc U B(x;,5/3) C U U,
i=1 i=1

and we are done. O

9.1 One-point Compactification

Fig. 2 is the stereographic projection of S' \ { N} to the real line. R is homeomorphic to S'\ {N}.
They are both not compact. However, if we add the "missing point" N, then the resulting space S
would be compact. Similarly, we can add a point to R to make it compact. One can think of this
process as wrapping up the real line around the unit circle, and then joint the two ends of the line to
form a "coherent" (compact) space.

Similarly, we can add a point N to the plane R?, to obtain a compact space R? U { N}. We can
think of this as wrapping up the plane around the punctured sphere S? \ { N}, and then add the final
point N to glue the space together (Fig. 3).
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Figure 3: Stereographic projection of S2 \ { N} to the real plane.

Generally, suppose we have a non-compact space X at hand, and we would like to add a point to
X to make a compact space Y = X U { N }. How should we define the topology on Y ? Return to the
above example of S, we see that for any neighborhood U of N, S'\ U is homeomorphic to a closed
interval, hence compact. This suggests that for our new space Y = X U { N }, any neighborhood of N
should already cover "most portion of the space”, namely only a compact subspace of X is left outside
U. In this way, Y would easily be made compact.

DEFINITION 9.24 Let (X, Ty ) be a non-compact topological space. A compactification of X is
a compact space Y such that X C Y and X = Y. If Y \ X has only one point, then it is called a
one-point compactification of X.

Construction 9.25. Let (X, Ty) be a non-compact space. Let N be a point not in X, and define the
topology 7y onY = X U {N} as

Ty =TxUOy ={Y \C : CC X compact }.
Lemma 9.26. 7y is indeed a topology on Y. S
Proof. We verify that 7y satisfies Definition 4.1.

1. 2,Y €Ty.

Ul,UzeTX => UanZETX’

UeTy.Y\CeOy = Un(¥\C)=U\C € Ty.
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{U,} Ty => UU,eTy;
3.1 (Y\C} cOy = U@\Cp=Y\(C) €Oy;

UETy,Y\CEOy = UUX\C) =X nU)UX\C)=Y\(C\U)€E Oy by Lemma 2.1.

Proposition 9.27. (Y, Ty) is compact. ¢

Proof. Any open cover @ of Y = X U { N} must contain Y \ C € Oy for some compact subset C in
X, in order to cover N, since N ¢ U for any U € Ty. Then since we are only left with a compact
subset C, we can cover it by finitely many subcover. O

Observation 9.28. Note that, If X is already compact, then the construction above amounts to attach
an isolated point { N } to X. Indeed, since X is compact, { N} = Y\ X € O is an open set containing
N. X is also closed in Y in this case, namely X = X, and we do not call such a compactification. If
X is not compact, then X isopeninY = X U{N}, and N is a limit point of X, namely (Y \C)Nn X =
X\ C # @ forany C C X compact,sothat X = X U{N} =Y. ©

Often, our space (X, 7y) will be Hausdorff, and we would like our one-point compactification
(Y, Ty) of X to be Hausdorff as well. Suppose X is Hausdorff and let x,y € ¥ = X U {N} be
two distinct points. If x,y € X, then we can find U,V € Ty C Ty suchthatx € U,y € V, and
UnNnV =@, because X is Hausdorff. If x € X, whiley € Y \ X = { N}, then finding x € U € Ty,
N €Y \ C € Oy such that

Un\O) =0

is equivalent to finding a neighborhood U of x and a compact subset C such that
xeUcC.

Motivated by this, we have the following notion:

DEFINITION 9.29 X is said to be locally compact at x € X if there is some C C X compact
such that x € U C C for some neighborhood U of x. It is called locally compact if it is locally
compact at every of its points.

Corollary 9.30. If (X, T) is locally compact and Hausdorf{f, then its one-point compactification Y =
X U { N} is Hausdorff as well. ®

We next do some exercises about the properties of locally compact spaces.

Exercise 9.31. Let (X, Ty) be Hausdorff. Then X is locally compact if and only if given x € X, for
any x € U € Ty, thereisx € V € Ty suchthatx € V C V c U and V is compact. )

Proof. "<": This is trivial. Just take C = V and U = V in Definition 9.29.

"=": Let x € U € Ty. Take one-point compactification Y = X U {N} of X. Since C =Y \ U
is closed in Y, it is compact by Proposition 9.4. Thus as in the proof of Proposition 9.5, we can find
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xeVeTy,CCcW eTysuchthat VNW = @. Then V C Y \ W, which is closed, so that
VCcY\W.SinceC=Y\UCcCW,wehave U =Y \ (Y \U)DY \ W DV > V. What’s more,
V is compact, by Proposition 9.4 again. O

10 Countability Axioms

DEFINITION 10.1 Let X be a topological space and let N, be the set of all neighborhoods of
x. X is said to have a countable basis at x if there is a countable N, C N, and a function
f + N, = N such that

f(N)C N

forall N € N,. We say X is first countable if it has a countable basis at every x € X.

e A metric space is first countable: { B(x, 1/n)},,cp is a countable basis at x.

e R, is first countable: {[x,x + 1/n)},,cn 1S a countable basis at x.

The significance of a first countable space lies in the fact that sequences are enough to characterize
limit points and continuous functions.

Proposition 10.2. Let X be a topological space.

(a) Let A C X. If there is a sequence (x,) in A such that x, - x € X, then x € A. The converse
holds if X is first countable.

(b) Let f : X = Y. If f is continuous, then x,, = x = f(x,) = f(x). The converse holds if X is
first countable. ¢

Proof. Suppose X is first countable.

(a) Letx € A, and let Ny = {N|, N,, ...}. Pick

n
X, € <ﬂ N,.> nA
i=1

for each n € N. Then it is easy to see that x,, — x: for every N € N,
f(N)=N,CN
for some k € N. Then

x, €[ |N;CN

n
i=1
for all n > k.

(b) We prove f (A) € f(A). Letx € A. Then by (a), there is a sequence (x,,) in A such that x, — x.
By assumption, f(x,) = f(x), so that f(x) € f(A). O
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DEFINITION 10.3 If a space X has a countable basis, then we say X is second countable.

e R is second countable: {(a, b)}, ,cq is a countable basis for R. Similarly, R"” is second count-
able.

e If X is an uncountable set, the discrete topology on X does not have a countable basis. The
discrete topology can be generated by the discrete metric, so this shows that not every metric
space is second countable.

e R, isnot second countable. The lower limit topology is too fine on R such that it is not possible
for a countable basis to generate this topology. To see this, let BB be a basis for R,. Then for
every x € R, there is B, € B such that x € B, C [x, x + 1). Further, B, # B, for x # y. This
shows that the function x — B, is injective, so that /3 has cardinality at least as large as R, so
that /3 can not be countable.

DEFINITION 10.4 A C X is said to be dense in X if A = X. If X has a countable dense subset,
then X is said to be separable.

Proposition 10.5. Let X be a topological space.
(a) If X is second countable, then it is Lindelof.

(b) If X is second countable, then it is separable. ¢

Proof. Suppose X is second countable, and let B = { B, } be a countable basis.

(a) Let.A be an open cover of X. Foreach B,, choose A, € A suchthat B, C A, if this is possible.
Then A’ = {A,} is countable. We claim that it covers X. For each x € X, we have x € A for
some A € A. Since A is open, we have x € B, C A for some B, € B. Thenx € B, C A,.
This proves that A" = {A,,} indeed covers X.

(b) Choose x, € B, for each B, € B. Then {x,} is dense in X. O

Exercise 10.6. A subspace of a first (second) countable space is first (second) countable, and a count-
able product of first (second) countable spaces is second-countable. 9]

Proof. Immediate. O

Exercise 10.7. Let A be an uncountable subset of a second countable space (X, o(/3)). Show that
uncountably many points of A are limit points of A. D)

Proof. Let A be the subset of A that are limit points of A, and suppose it is countable. Then A\ A4 is
uncountable. For every x € A\ A, there is a basis element B, such that B, N A = {x}. Furthermore,
forx # y € A\ Ay we have B, # B, since B,N A # B,N A. The map x — B, is thus injective from
A\ Ay to B, so that /3 cannot be countable. O
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Exercise 10.8. Show that every compact metrizable space is second countable. )

Proof. Let (X, d) be a compact metric space. For each n € N, let 3, be the collection of those finitely
many elements in { B(x, 1/n)},cy that cover X. Then

B=|]B,

neN

is a countable basis of X. O
Exercise 10.9. Show that R, is Lindelof. o

Proof. Let O = {[a, b)} be an open cover of R by basis elements. For any x € R, define
C, = {y > x| [x, y] can be countably covered}.

Then it must be the case that sup C, = oo. For suppose sup C, = z < oo0. Then there is [a,b) € O
such that z € [a,b). Pick y € C, N [a,b), so that [x, y] is countably covered, and pick z’ € (z, b).
Then [x, z'] = [x, y] U [y, z’] can be countably covered, since [y, z'] C [a, b). This shows z’ € C,,
contradicting to the fact that z = sup C,. Thus any closed interval in R can be countably covered, and
sois R = J,en[—n. 1. O

From Proposition 10.5, we see that Lindelof and separability is weaker than the second countability
axiom. R is such an example that is both Lindelof and separable (rational numbers are dense in R )
but not second countable. However, for metric spaces these three are equivalent.

Exercise 10.10. Let (X, d) be a metric space.
(a) If X is Lindelof, then it is second countable.

(b) If X is separable, then it is second countable. D)

Proof.  (a) Foreachn € N, let 3, be the collection of those countably many elementsin { B(x, 1/n)},cx
that cover X. Then
B=|]5,

neN

is a countable basis of X.

(b) Let {x,},cn be a countable dense subsetin X. Then

{BGow 1/m)}, e

is a countable basis of X. O
Corollary 10.11. R, is not metrizable. )
Exercise 10.12. Show that R? is not Lindelof. o
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Proof. Let
L={(,—-x)|xeR}.

Then L is closed in R;. Indeed, for any (x, y) € R2 \ L, we have (x,y) € [x,a) X [y,b) C R? \ L for
some a, b € R, so that R? \ L is open. Now consider the open cover of R? by

(9={[RZ\L}U{[x,x+a)><[—x,—x+a)|xelR}

for some a > 0. Since [x,x + a) X [-x,—x + a) N L = {(x,—x)} for each x € R, remove any
[x, x + a) X [-x, —x + a) would result in {(x, —x)} € R? not being covered. m|

11 Separation Axioms

DEFINITION 11.1 Let (X, 7)) be a topological space. Given two sets A and B in X, we say A
and B can be separated in the topology if there exist U,V € T suchthat A C U, B C V, and
UnV =g@.

1. Suppose one point sets are closed in (X, 7). Then X is said to be regular if for any closed
set C in X, any x ¢ C can be separated in the topology from C.

2. Suppose one point sets are closed in (X, 7). Then X is said to be normal if every pair of
disjoint closed sets can be separated in the topology.

Proposition 11.2. Let (X, T) be a topological space where one-point sets are closed.

1. X is regular if and only if given x € X and a neighborhood U of x, there is an open set V such
thatx € V and V C U.

2. X is normal if and only if given a closed set A and an open set U such that A C U, there is an
open setV suchthat ACV andV C U. ¢

Proof. 1. Suppose first that X is regular, and let x € U. Then x ¢ X \ U, so that there is
V.W eTsuchthatx e V, X\U CW,andV NnW =@. Wethenhave VC X \ W C U,
and since X \ W is closed, we have V' .C X \ W C U, as desired.

To prove the converse, let C be closed in X. Then for every x € X \ C, there is open set V'
suchthatx € V. c ¥V € X \ C. Observe that X \ V D C,and V n (X \ V) = @. x and C are
thus separated by V and X \ V.

2. Suppose first that X isnormal, andlet A C U. Then AN(X\U) = @, sothatthereisV, W € T
suchthat ACV, X\U CW,andV NnW = @. Wethenhave VC X \ W C U, and since
X \ W is closed, we have V. C X \ W C U, as desired.

To prove the converse, let A, B be closed sets in X suchthat AN B = @. Then A C X \ B,
which is open, so that by assumption there is V open such that A C V Cc V C X \ B. Observe
that X \V D B,and V n(X \ V) = @. A and B are thus separated by V and X \ V. o
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Example 11.3. We define a topology on R to make it fail to be regular, but still Hausdorff. To do
this, observe that 0 and K = {1/n : n € N} are very "close": 0 is a limit point of K in the usual
topology. If we can make K closed in our new topology, then the point 0, which is not in K, would
be very very close to the closed set K, and they may not be separated provided our new topology is
not too fine. Now, how to make K closed? Easy, just declare (a, b) \ K to be open! Formally, we let
By be the basis on R consisting of all open intervals (a, b) and all sets of the form (a, b) \ K. The
topology generated by the basis By is denoted by Ty, and we write R = (R, 7). K is closed in
Rk, and Ry is easily seen to be Hausdorff. Suppose now we want to separate 0 and K. Then for
neighborhood of 0, we must choose sets of the form (a, b) \ K. Without loss of generality we assume
itis (—e,€) \ K, where 0 < ¢ < 1. For an open set that contains K we must choose sets of the form
(a, b), and without loss of generality we assume it is (0, r) for some r > 1. Now 0 € (—¢,¢) \ K,
K c (0,r), but obviously the two open sets cannot be disjoint. Indeed, by Lemma 2.2 we have
((~e,&)\ K) n(0,r) = [(—=e,&) N (0,r)] \ K = (0,€) \ K, and the last set is obviously not empty. <

Example 11.4. Every metric space is normal. To see this, let (X, d) be a metric space, and A and
B be two disjoint closed sets in X. Since X \ B is open, for every x € A there is an open ball
B(x,¢€,) such that x € B(x,¢e,) C X \ B, and similarly for every y € B there is B(y, ey) such that
Y€ B(y,e)) C X \ A. Then

U= U B(x,e,/2) and V = U B(y.€,/2)

XEA yEB

are open sets containing A and B respectively. Tosee U NV = @,letz € UnN V. Then z €
B(x,€,/2) N B(y,¢e,/2) for some x € A and y € B. Then

d(x,y) <d(x,z) +d(z,y) < e€,/2+¢€,/2 <max{e,, €},

a contradiction to our selection of open balls. <

Exercise 11.5. Let f,g : X — Y be continuous, where Y is Hausdorff. Show that A = {x €
X|f(x) =g(x)}isclosed in X. O

Proof. Weprove X \ A = {x € X|f(x) # g(x)} isopenin X. Let x € X \ A, so that f(x) # g(x).
Then since Y is Hausdorff, there are open sets U, V in Y such that f(x) e U, g(x) € V,andU NV =
@. We then have x € f~1(U) as well as x € g~}(V), so that x € f~'(U) n g~ (V). Given any
ye f~LU)ng '(V), wehave f(y) € U and g(y) € V, and since U NV = @, we have f(») # g(»),
so that y € X \ A. This proves x € (f_l(U) N g_l(V)) C X\ A,s0 X \ Ais open. O

Exercise 11.6. Letp : X — Y be a closed continuous surjective map. Show that if X is normal, then
soisY. [2))

Proof. Let A, B be closed sets in Y such that AN B = @. Then p~!(A) and p~!(B) are closed in X,
and p~'(A) n p~!(B) = @. By normality of X, there exist U,V open in X such that p~!(A) c U,
p~'(B) c V,andUNV = @. Now to find disjoint open subsets in Y that contain A and B respectively,
we first take the complements X \ U and X \ V, which are closed, and send them to Y via p, obtaining
two closed sets p(X \ U) and p(X \ V) in Y, then finally take the complements Y \ p(X \ U) and
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Y \ p(X \ V). These two open sets in Y are disjoint due to the surjectivity of p. Indeed, we have

(Y\pX\U)n (Y \pX\V)) =Y\ [p(X \U)UpX \ V)]
=Y \p[X\UD)uX\ V)
=Y \p(X\(UNV))
=Y\ p(X)
=Y\Y=0.

Now we claim A C Y \ p(X \ U). From p~!1(4) c U, wehave X \U C X\ p~1(4) = p~' (Y \ A).
Then
pPX\U)Cp(p (Y \A) cY\A4,

sothat Y \ p(X \ U) D A. The proof for Y \ p(X \ V) D B is similar. This completes the proof that
Y is normal. O

Exercise 11.7. Let f : X — Y be a closed continuous surjective map such that f~!({y}) is compact
foreachyeY. Q)

(a) Show that if X is Hausdorff, then so is Y.

Recall how we proved that every compact set in a Hausdorff space is closed in Proposition 9.5. Its
proof can be used to show that Hausdorff space is "regular" and "normal" with respect to compact
sets.

Lemma 11.8. In a Hausdorff space X, any compact set A can be separated from points not in
A. *

Proof. Fix xy € X \ A. Then for every y € A, there are open sets U, and V), such that x, € U,,
yeV,andU,NV, = 3. {V,},e4 1s an open cover of A; by compactness of A, A C U, v, =:

V for some finite number of points y;,...,y, in A. Denote U := (ﬂl'.’zl in>. Then x € U,
AcCcV,and U NV = @, which is desired. O

Lemma 11.9. In a Hausdorff space X, every pair of disjoint compact sets A and B can be sep-
arated. %

Proof. By Lemma 11.8, for every x € A, there is open sets U, and V, such thatx € U,, B C V,,
and U, NV, = @. By compactness of A, the open cover {U,},c4 of A has a finite subcover so
that AC U, U--UU, forsome finite set of points x,, ..., x, in A. ThenU :=U, U--UU,
and V' :=V, n-- NV, aredisjoint open sets that contain A and B respectively. O

Proof (Proof of (a)). Let y, # y, € Y. Then p‘l({yl }) and p‘l({yz}) are closed disjoint sets in
X. We would not have proceeded as in Exercise 11.6 to find open sets U and V' in X such that
iUy H U, p'({y,}) CV,and U NV = @, since we do not assume X to be normal, but
merely Hausdorff. Now our extra condition that " f~!({y}) is compact for each y € Y" comes to
rescue, in light of Lemma 11.9. O
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(b) Show that if X is regular, then sois Y.

Proof. Given closed set C in Y and y ¢ C, we would like to find open sets U and V' in X such
that p~'({y}) c U, p™(C) c V,and U NV = @, so that we can proceed as in the proof of
Exercise 11.6. The proof is in the same spirit as in Lemma 11.9. For every x € p~!({y}), by
regularity of X we can find open sets U, and V, in X such that x € U,, p~'(C) C V,, and
U,nVy=3. {U,}ep1((yy I8 an open cover of p~'({y}); by compactness of p~!({y}) there are
Xis.ee s X, IN P ~1({y}) such that p~'({y}) C le u--u an. Then U := le U--u an and
V.= Vx1 N .- NV, are the desired open sets we want to find. O

(c) Show that if X is locally compact, then sois Y.

Proof. Let y € Y be arbitrary. Consider p~'({y}). Since X is locally compact, for every x €
p~1({y}) there are some open set U, and compact set C, such thatx € U, C C,. {U Yep (o))
is an open cover of p~!({y}); by compactness of p~!({y}) there are x|, ..., x, in p~'({y}) such
that p~'({y}) c U, U~ U U, . LetU := U, U--UU, and C := C, U--UC, . Then
p~'({y}) c U c C, where U is open and C is compact. From this we have

X\UD>X\C
U
p(X\U)DpX\C)
2
Y\p(X\U)CcY\pX\CO) =Y\ \p(C)) = p().
Wehave y € Y \ p(X \ U) C p(C), where Y \ p(X \ U) is open and p(C) is compact. This

completes the proof that Y is locally compact. O

From Lemma 11.9, if a Hausdorff space is compact, then it is automatically normal, since every
closed set in a compact space is compact.

Proposition 11.10. Every compact Hausdorff space is normal. ¢

We can use the similar idea in the proof of Lemma 11.9 to obtain the following result.
Proposition 11.11. Every Lindelof regular space is normal. ¢

Proof. Suppose X is regular and Lindeldf, and let A and B be two disjoint closed sets in X. By
regularity of X, foreach x € A we can choose a neighborhood U, of x such thatx € U, c U, C X \B.
Similarly, for each y € B thereis V, suchthaty € V,, C I7y C X\ A. {U,},es and {V}} p are covers
of A and B respectively; since A and B are themselves Lindelof (because they are closed in X)), we
have A c |52, U, and B C |J_, V, for some countable subcovers.

NowdeﬁneU’ =U\U_,V, andV’ V,\U._, U,. ThenforU = |J72, U/ and V = |},
wehaveACU,BCV andU NV = @asdesued l:|
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12 Urysohn Lemma and Its Applications

Theorem 12.1 (Urysohn Lemma). Let X be a normal space, and let A and B be two disjoint closed
sets in X. Then there exists a continuous function f . X — [0, 1] such that f(A) = 1and f(B) = 0.0

Proof. We shall find a family of open sets around A and index them by dyadic rationals in [0, 1], and
define our continuous function using the index.
Let Uy = X \ B. Since A C X \ B, we have by normality an open set U /, such that

ACU,,cU,cU,
Applying the above process again to the closed sets A and U, /2» we can find Uy /4 and U, 4 such that
ACUsyyCUyyyCUypyCcUyycUyyclUy, CU,.

We index the open sets closer to A using dyadic rationals that are closer to 1, because we want f(A)
to be equal to 1, and points closer to A to have higher values, while for points that are further and
further away from A we want to assign them smaller and smaller values so that eventually f(x) =0
for all x € B. Continuing our construction, we obtain a family of open sets {U,} indexed by dyadic
rationals k /2" in [0, 1] such that U,cU,forall p>gq.

Now define f : X — [0,1] by f(x) = sup{p|x € U,} forx € X \ B, and f(x) = 0 for x € B.
To prove f is continuous, by Exercise 7.9 we only need to verify that { f(x) > a} and { f(x) < a} are
open in X. To make matters more clear, let us denote the set {p|x € U,} by A, sothatp € A, if and
only if x € U,. We want to show f(x) = sup A, is continuous. Let a € (0, 1) be given, and let p > a.
For any x € U,,, we have p € A, sothata < p <sup A, = f(x). This proves U, c {f(x) > a} for
any p > a, so we have Up>a U, c {f(x) > a}. Conversely, if a < sup A, = f(x), then there is some
pE€ A suchthata < p <supA,,sothatx € U, This proves { f(x) > a} c |J U, Thus we have
{f(x) > a} :Up>aUp. ]

Next, let p < a. If x & U, then x & U, for all p’ > p, so that p’ & A, for all p" > p. We can
then derive that f(x) = supA, < p < a. This shows X \ U, c {f(x) <a}forall p < a, so that
U p<a X \U » C{f(x) <a}. Conversely, if x € X is such that f(x) < a, then we can find two dyadic
numbers p and p’ such that f(x) < p’ < p < a. We have x ¢ U, since otherwise p € A, and thus
p <sup A, = f(x), acontradiction. By our construction we have Up/ cU,sox¢ U » as well. This
proves { f(x) < a} C Up<a X\ l_]p. We thus have { f(x) < a} = Up<aX \ Up. We have proved that
both { f(x) < a} and { f(x) > a} can be written as unions of open sets in X, so they are open. This
completes the proof that our f is indeed continuous. O

p>a

There is no speciality of the interval [0, 1] in the statement of the theorem, and we can replace it
by an arbitrary closed interval [a, b].

Theorem 12.2 (Tietze Extension Theorem). Let X be a normal space and let A be a closed subset of
X. Any continuous function f . A — [a, b] can be extended to a continuous functiong : X — [a, b].®

Proof. Given a continuous function f from A to [—r,r], we can use Urysohn lemma to construct a
continuous function g on X such that

() |g| < %for all x € X;
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@2 |f-gl S%forallaeA.

To do this, consider I, = [-r,—r/3],I, = [-r/3,r/3],15; = [r/3,r], and let B = f~!(1,) and
C = f~(I5). B and C are closed and disjoint in X, so by Urysohn Lemma there exists continuous
function g : X — [—r/3,r/3] such that g(B) = —r/3 and g(C) = r/3. It is easy to see that g satisfies
(1) and (2).

Now we prove the theorem. Without loss of generality, let f : A — [—1,1] be a continuous
function on A that takes values in [—1, 1]. Apply the above procedure to f, we obtain a continuous
function g, on X such that

1) gl S%foralleX;

) |f - gl S%forallaeA.

Apply the same construction to the function f — g; : A — [-2/3,2/3], we obtain a continuous
function g, on X such that

(1) lgl = % <§) forall x € X;

@ |f—g—8&l= % <%> foralla € A.
By induction, we get a sequence of continuous functions {g,},cy on X such that for each n € N

n—1
(D g, < % (%) forall x € X;

@ 1f - Zn:g,w < (%)nforalla €A
i=1

Let g = Zf:l g,- We show g is the desired extension of f. First, by comparison test g indeed

converges on X: we have
0 o0 1/2 n—1
< — (= =1.
g;g” —23 (3)

n=1

lgl =

From (2) we have
Tim |f = > &l =1/ ~gl=0
i=1
on A, so that f(a) = g(a) for all a € A. It is also clear that 2?:1 g; converges uniformly to g:

REE ORI

i=n+1 =

lg —g,l =

Continuity of g follows. This completes the proof that g : X — [—1, 1] is the desired extension of
f i A->[-1,1]. O

Corollary 12.3. Let X be a normal space and let A be a closed subset of X. Any continuous function
f A > R can be extended to a continuous function g : X — R. ®
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Proof. Without loss of generality, let f : A — (—1,1) be a continuous function on A that takes
values in (—1,1) C [—1,1]. By the Tietze Extension Theorem, we can extend f to a continuous
function g : X — [—1,1]. What if there is some x € X such that g(x) = 1 or g(x) = —1? Kill
them! Note that A C g~!(=1,1) and E = g~'{—1, 1} are disjoint in X, so by Urysohn Lemma there
is continuous function A : X — [—1, 1] such that

AMA)=1 and AME)=0.
We use A to "kill" the set of points in X on which g has values in {—1, 1}. So let g’ be defined by
g'(x) = Ax)g(x)

for all x € X. It is easy to see that g(a) = A(a)g(a) = 1 - g(a) = g(a) = f(a) for a € A. Also, when
x € E, we have g'(x) = A(x)g(x) =0-g(x) = 0 and for x € E we have g’(x) = A(x)g(x) < 1-g(x) <
1. Thus g’ : X — (=1, 1) is our desired extension of f : A — (=1, 1). O

Exercise 12.4. The Tietze Extension Theorem implies the Urysohn Lemma. D)

Proof. Let A and B be two closed and disjoint subsets in a normal space X . Define f : AUB — [0, 1]

by
1 ifxe€ A;
x:
A {0 if x € B.

Since ANB = @, f is continuous. Apply the Tietze Extension Theorem, we get a continuous extension
g . X = [0,1] of f such that g(x) = f(x) for x € AU B. Thus g(x) = 1 for x € A and g(x) = 0 for
X € B, as desired. O

Our next application of the Urysohn Lemma is the embedding of compact manifolds in Euclidean
space R,

DEFINITION 12.5 f : X — Y is an embedding of X into Y if f : X — f(X) is a homeomor-
phism. Namely, f is injective and continuous, and f~! : f(X) — X is also continuous.

DEFINITION 12.6 An m-manifold M is a second countable Hausdorff space that is locally home-
omorphic to R".

By "locally homeomorphic to R™" we mean each point of M has a neighborhood that is homeomorphic
to an open subset of R™. The most familiar example of a manifold is probably the place you are
standing on: the surface of our earth (here we approximate the surface of earth by the unit ball S =
{x € R? : ||x|l, = 1}) This is the manifold that we can directly feel in reality: the surface of earth
lies in a three dimensional space, but looking around, we feel like we are living on a giant plane, and
the surface of earth can thus be seen as a 2-manifold.

The requirement that a manifold be second countable and Hausdorff is equally important with the
local homeomorphism assumption. They together ensure that a manifold can indeed be embedded in
Euclidean space. In other word, the local homeomorphism assumption alone does not guarantee that
a space can have all the crucial topological properties of the Euclidean space.

The support of a real valued function ¢ on X is {x € X : ¢(x) # 0}. We denote the support of a
function ¢ by suppe.
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DEFINITION 12.7 Let{U,,...,U,} be afinite open cover of X. An indexed family of continuous
functions ¢; : X = [0,1],i = 1,...,n1is said to be a partition of unity subordinated to {U,} if

(1) suppg; C U, for each i;

(2) Y ¢;=:P=1lonX.

Lemma 12.8. Let {U,,...,U,} be a finite open cover of of X. If X is normal, then there exists a
partition of unity subordinated to {U,}. %

Proof. First, we prove that there is an open cover {V}, ..., V, } of X such that V; C U, for each i. Since
X=U,uU,U--uUU, wehave A = X \ (U, U ---UU,) C U;. By normality, there is open set V,
such that A, C V; and V; C U,. Then {V;,U,,...,U,} covers X. Similarly, A, = X \ (V;U---UU;zU
-++UU,) C U,, so that there is open set V, such that A, C V; and V, C U,. Then {V},V,,Us, ..., U, }
covers X. In general, after we find V), ..., V,_; such that {V|,...,V,_.U,...,U,} covers X, we
have A, = X\ (V;U--UV,_ Ul U--UU,) C U, so that there is open set V; such that A, C V,
andI_/k cUgand {Vy,...,V, Uiy, ..., U,} covers X. At k = n we obtain an open cover {V}, ..., V,}
of X such that V; C U, for each i, as desired.

We can similarly find open cover {W/, ..., W, } such that W; C V; for each i. We can now apply
Urysohn Lemma to obtain a continuous function y; : X — [0, 1] for each i such that y;(W;) = 1 and
v;(X \ V;) = 0. Then since {x € X : y,(x) # 0} C V;, we have

suppy; = {x € X : y;(x) #0} C 17, cU..

Given x € X, we have x € W; for some i, so that ¥(x) = 27:1 y;(x) > 1. The functions

_ w;(x)
¢i(x) = Y(x)
fori =1,...,n constitute the desired partition of unity. O

Lemma 12.9. Let f : X — Y be a bijective continuous function. If X is compact andY is Hausdorff,
then f is a homeomorphism. S

Proof. A closed in X = A compact in X = f(A) compactin Y = f(A) closed in Y. This proved
that f~! : Y — X is continuous. m|

Theorem 12.10 (Embedding of Manifolds). If M is a compact m-manifold, then it can be embedded
in RN for some N € N. O

Proof. For every x € M we can find a neighborhood U, of x such that U, is homeomorphic to an
open set in R™. The collection {U, },c,, covers M, so by compactness there is a subset {U, ..., U, }
of {U, } s that also covers M. We thus have n continuous functions f; : U; — R™ at our disposal,
where each f; is an embedding of U, into R™. Because M is compact and Hausdorff, M is normal,

so that we have partition of unity ¢, ..., ¢, subordinated to {U;}. Define fi’ : M — R™ for each
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roon_ ) @i fix) x€e Uy
fio) =
0 X € M \ suppg;.

For x € U; n (M \ suppg,) we have ¢;(x) - fi(x) = 0- fi(x) = 0, so that fl.’ is well defined. Now
define
F:M->RX---XRXR"X--xXR"

by

F(x) = (¢1(x), ..., d,(x), [1(X), .., f1()).
F is continuous, so by Lemma 12.9 we only need to verify that F is injective. Suppose F(x) = F(y).
Then ¢;(x) = ¢,(y) and f/(x) = f/(y) forall i = 1,...,n. Since Y|, ¢;(x) = 1, we have ¢,(x) =
¢;(y) > 0 for some i, so that x,y € U,. Then from f/(x) = f/(y), we have f;(x) = fi(y). But

fi + U; = R™is injective, so that x = y. O
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